The problem asks to find the angle $\theta$ between two vectors $\vec{a}$ and $\vec{b}$ for three different cases: (1) $\vec{a} = (2, 1)$, $\vec{b} = (1, 3)$ (2) $\vec{a} = (-3, 4)$, $\vec{b} = (4, 3)$ (3) $\vec{a} = (-2, 0)$, $\vec{b} = (3, -\sqrt{3})$

GeometryVectorsDot ProductAngle between VectorsTrigonometry
2025/5/11

1. Problem Description

The problem asks to find the angle θ\theta between two vectors a\vec{a} and b\vec{b} for three different cases:
(1) a=(2,1)\vec{a} = (2, 1), b=(1,3)\vec{b} = (1, 3)
(2) a=(3,4)\vec{a} = (-3, 4), b=(4,3)\vec{b} = (4, 3)
(3) a=(2,0)\vec{a} = (-2, 0), b=(3,3)\vec{b} = (3, -\sqrt{3})

2. Solution Steps

The angle θ\theta between two vectors a\vec{a} and b\vec{b} can be found using the dot product formula:
ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta}
Thus,
cosθ=abab\cos{\theta} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}
where a|\vec{a}| is the magnitude of vector a\vec{a}.
(1) a=(2,1)\vec{a} = (2, 1), b=(1,3)\vec{b} = (1, 3)
ab=(2)(1)+(1)(3)=2+3=5\vec{a} \cdot \vec{b} = (2)(1) + (1)(3) = 2 + 3 = 5
a=22+12=4+1=5|\vec{a}| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}
b=12+32=1+9=10|\vec{b}| = \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10}
cosθ=5510=550=5252=552=12=22\cos{\theta} = \frac{5}{\sqrt{5} \sqrt{10}} = \frac{5}{\sqrt{50}} = \frac{5}{\sqrt{25 \cdot 2}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}
θ=arccos(22)=π4\theta = \arccos{(\frac{\sqrt{2}}{2})} = \frac{\pi}{4} or 4545^{\circ}
(2) a=(3,4)\vec{a} = (-3, 4), b=(4,3)\vec{b} = (4, 3)
ab=(3)(4)+(4)(3)=12+12=0\vec{a} \cdot \vec{b} = (-3)(4) + (4)(3) = -12 + 12 = 0
Since ab=0\vec{a} \cdot \vec{b} = 0, cosθ=0\cos{\theta} = 0.
θ=arccos(0)=π2\theta = \arccos{(0)} = \frac{\pi}{2} or 9090^{\circ}
(3) a=(2,0)\vec{a} = (-2, 0), b=(3,3)\vec{b} = (3, -\sqrt{3})
ab=(2)(3)+(0)(3)=6+0=6\vec{a} \cdot \vec{b} = (-2)(3) + (0)(-\sqrt{3}) = -6 + 0 = -6
a=(2)2+02=4=2|\vec{a}| = \sqrt{(-2)^2 + 0^2} = \sqrt{4} = 2
b=32+(3)2=9+3=12=23|\vec{b}| = \sqrt{3^2 + (-\sqrt{3})^2} = \sqrt{9 + 3} = \sqrt{12} = 2\sqrt{3}
cosθ=6223=643=323=3323=32\cos{\theta} = \frac{-6}{2 \cdot 2\sqrt{3}} = \frac{-6}{4\sqrt{3}} = \frac{-3}{2\sqrt{3}} = \frac{-3\sqrt{3}}{2 \cdot 3} = -\frac{\sqrt{3}}{2}
θ=arccos(32)=5π6\theta = \arccos{(-\frac{\sqrt{3}}{2})} = \frac{5\pi}{6} or 150150^{\circ}

3. Final Answer

(1) θ=π4\theta = \frac{\pi}{4} or 4545^{\circ}
(2) θ=π2\theta = \frac{\pi}{2} or 9090^{\circ}
(3) θ=5π6\theta = \frac{5\pi}{6} or 150150^{\circ}

Related problems in "Geometry"

We are given a figure where line segment $AB$ is parallel to line segment $CD$. We are also given th...

Parallel LinesAnglesGeometric ProofAngle Properties
2025/6/7

The problem states that the area of triangle OFC is $33 \text{ cm}^2$. We need to find the area of t...

AreaTrianglesSimilar TrianglesRatio and Proportion
2025/6/6

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3