The problem is to evaluate the expression $2^{34} - 2^{33}$.

AlgebraExponentsFactorizationApproximationCalculation
2025/5/11

1. Problem Description

The problem is to evaluate the expression 2342332^{34} - 2^{33}.

2. Solution Steps

We can factor out 2332^{33} from the expression.
234233=2332123312^{34} - 2^{33} = 2^{33} \cdot 2^1 - 2^{33} \cdot 1
234233=233(21)2^{34} - 2^{33} = 2^{33} (2 - 1)
234233=233(1)2^{34} - 2^{33} = 2^{33} (1)
234233=2332^{34} - 2^{33} = 2^{33}
Now we need to calculate 2332^{33}.
210=1024103=10002^{10} = 1024 \approx 10^3 = 1000
233=23023=(210)38=(1024)382^{33} = 2^{30} \cdot 2^3 = (2^{10})^3 \cdot 8 = (1024)^3 \cdot 8
Since we cannot use a calculator, we can approximate (1024)3(1024)^3 as (1000)3=109(1000)^3 = 10^9. So, we get approximately 81098 \cdot 10^9.
If we need a more accurate value:
233=8,589,934,5922^{33} = 8,589,934,592

3. Final Answer

233=85899345922^{33} = 8589934592

Related problems in "Algebra"