The image presents a math exam with several problems related to complex numbers, limits, integrals, differential equations, and 3D geometry. We are given two complex numbers $Z_1 = -1 + i\sqrt{3}$ and $Z_2 = -2\sqrt{3} - 2i$. We are asked to: * I.a) Calculate $Z_1 \times Z_2$ and $\frac{Z_1}{Z_2}$ in algebraic form. * I.b) Write $Z_1 \times Z_2$ and $\frac{Z_1}{Z_2}$ in trigonometric form. * II. Evaluate the limits: $A = \lim_{x \to 0} \frac{x\sin x}{\tan^2 x}$, $B = \lim_{x \to 1} \frac{3x^3 - 2x^2 + x - 2}{x^2 - 3x + 2}$, and $C = \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\sqrt{2}(4x - \pi)}$. * III. Evaluate the integrals: $I = \int_1^2 (x^2 - 2x - 1) dx$, $J = \int_0^{\frac{\pi}{2}} (\sin 3x + 4\sin 4x) dx$, and $K = \int \frac{\sin x}{x} dx$. * IV. Given the differential equation $y'' + 4y = 0$: * a) Solve the differential equation. * b) Find the particular solution if the graph passes through $A(0, 2)$ and the tangent line at $A$ is parallel to the line $y = 2x - 1$. * V. Given points $A(1, -1, 3)$, $B(0, 3, 1)$, $C(6, -7, -1)$, $D(2, 1, 3)$, and $E(4, -6, 2)$: * a) Find the equation of the plane $(ABD)$ and the parametric equation of the line $(EC)$. * b) Show that $(EC)$ is orthogonal to the plane $ABD$.

OtherComplex NumbersLimitsIntegralsDifferential Equations3D GeometryAlgebraTrigonometry
2025/5/11

1. Problem Description

The image presents a math exam with several problems related to complex numbers, limits, integrals, differential equations, and 3D geometry. We are given two complex numbers Z1=1+i3Z_1 = -1 + i\sqrt{3} and Z2=232iZ_2 = -2\sqrt{3} - 2i. We are asked to:
* I.a) Calculate Z1×Z2Z_1 \times Z_2 and Z1Z2\frac{Z_1}{Z_2} in algebraic form.
* I.b) Write Z1×Z2Z_1 \times Z_2 and Z1Z2\frac{Z_1}{Z_2} in trigonometric form.
* II. Evaluate the limits: A=limx0xsinxtan2xA = \lim_{x \to 0} \frac{x\sin x}{\tan^2 x}, B=limx13x32x2+x2x23x+2B = \lim_{x \to 1} \frac{3x^3 - 2x^2 + x - 2}{x^2 - 3x + 2}, and C=limxπ4sinxcosx2(4xπ)C = \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\sqrt{2}(4x - \pi)}.
* III. Evaluate the integrals: I=12(x22x1)dxI = \int_1^2 (x^2 - 2x - 1) dx, J=0π2(sin3x+4sin4x)dxJ = \int_0^{\frac{\pi}{2}} (\sin 3x + 4\sin 4x) dx, and K=sinxxdxK = \int \frac{\sin x}{x} dx.
* IV. Given the differential equation y+4y=0y'' + 4y = 0:
* a) Solve the differential equation.
* b) Find the particular solution if the graph passes through A(0,2)A(0, 2) and the tangent line at AA is parallel to the line y=2x1y = 2x - 1.
* V. Given points A(1,1,3)A(1, -1, 3), B(0,3,1)B(0, 3, 1), C(6,7,1)C(6, -7, -1), D(2,1,3)D(2, 1, 3), and E(4,6,2)E(4, -6, 2):
* a) Find the equation of the plane (ABD)(ABD) and the parametric equation of the line (EC)(EC).
* b) Show that (EC)(EC) is orthogonal to the plane ABDABD.

2. Solution Steps

I. Complex Numbers
a) Z1=1+i3Z_1 = -1 + i\sqrt{3} and Z2=232iZ_2 = -2\sqrt{3} - 2i
Z1×Z2=(1+i3)(232i)=23+2i6i2i23=23+23+2i6i=434iZ_1 \times Z_2 = (-1 + i\sqrt{3})(-2\sqrt{3} - 2i) = 2\sqrt{3} + 2i - 6i - 2i^2\sqrt{3} = 2\sqrt{3} + 2\sqrt{3} + 2i - 6i = 4\sqrt{3} - 4i
Z1Z2=1+i3232i=1+i3232i×23+2i23+2i=232i6i2312+4=8i16=12i\frac{Z_1}{Z_2} = \frac{-1 + i\sqrt{3}}{-2\sqrt{3} - 2i} = \frac{-1 + i\sqrt{3}}{-2\sqrt{3} - 2i} \times \frac{-2\sqrt{3} + 2i}{-2\sqrt{3} + 2i} = \frac{2\sqrt{3} - 2i - 6i - 2\sqrt{3}}{12 + 4} = \frac{-8i}{16} = -\frac{1}{2}i
b) Trigonometric form
Z1×Z2=434i=r(cosθ+isinθ)Z_1 \times Z_2 = 4\sqrt{3} - 4i = r(\cos\theta + i\sin\theta).
r=(43)2+(4)2=48+16=64=8r = \sqrt{(4\sqrt{3})^2 + (-4)^2} = \sqrt{48 + 16} = \sqrt{64} = 8.
cosθ=438=32\cos\theta = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2} and sinθ=48=12\sin\theta = \frac{-4}{8} = -\frac{1}{2}.
Thus, θ=π6\theta = -\frac{\pi}{6}.
Z1×Z2=8(cos(π6)+isin(π6))=8(cos(11π6)+isin(11π6))Z_1 \times Z_2 = 8(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})) = 8(\cos(\frac{11\pi}{6}) + i\sin(\frac{11\pi}{6}))
Z1Z2=12i=012i\frac{Z_1}{Z_2} = -\frac{1}{2}i = 0 - \frac{1}{2}i.
r=02+(12)2=12r = \sqrt{0^2 + (-\frac{1}{2})^2} = \frac{1}{2}.
cosθ=0\cos\theta = 0 and sinθ=1\sin\theta = -1.
Thus, θ=π2\theta = -\frac{\pi}{2}.
Z1Z2=12(cos(π2)+isin(π2))=12(cos(3π2)+isin(3π2))\frac{Z_1}{Z_2} = \frac{1}{2}(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})) = \frac{1}{2}(\cos(\frac{3\pi}{2}) + i\sin(\frac{3\pi}{2}))
II. Limits
A = limx0xsinxtan2x=limx0xsinxsin2xcos2x=limx0xcos2xsinx=limx0xsinx×limx0cos2x=1×1=1\lim_{x \to 0} \frac{x\sin x}{\tan^2 x} = \lim_{x \to 0} \frac{x\sin x}{\frac{\sin^2 x}{\cos^2 x}} = \lim_{x \to 0} \frac{x\cos^2 x}{\sin x} = \lim_{x \to 0} \frac{x}{\sin x} \times \lim_{x \to 0} \cos^2 x = 1 \times 1 = 1.
B = limx13x32x2+x2x23x+2=limx13x32x2+x2(x1)(x2)\lim_{x \to 1} \frac{3x^3 - 2x^2 + x - 2}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{3x^3 - 2x^2 + x - 2}{(x - 1)(x - 2)}.
Since the limit is indeterminate, we have 3(1)32(1)2+12=32+12=03(1)^3 - 2(1)^2 + 1 - 2 = 3 - 2 + 1 - 2 = 0. This means x1x-1 is a factor.
Polynomial long division gives us 3x32x2+x2=(x1)(3x2+x+2)3x^3 - 2x^2 + x - 2 = (x-1)(3x^2 + x + 2).
So, limx1(x1)(3x2+x+2)(x1)(x2)=limx13x2+x+2x2=3(1)2+1+212=61=6\lim_{x \to 1} \frac{(x - 1)(3x^2 + x + 2)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{3x^2 + x + 2}{x - 2} = \frac{3(1)^2 + 1 + 2}{1 - 2} = \frac{6}{-1} = -6.
C = limxπ4sinxcosx2(4xπ)\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\sqrt{2}(4x - \pi)}.
Using L'Hopital's rule:
limxπ4cosx+sinx42=cos(π4)+sin(π4)42=22+2242=242=14\lim_{x \to \frac{\pi}{4}} \frac{\cos x + \sin x}{4\sqrt{2}} = \frac{\cos(\frac{\pi}{4}) + \sin(\frac{\pi}{4})}{4\sqrt{2}} = \frac{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}}{4\sqrt{2}} = \frac{\sqrt{2}}{4\sqrt{2}} = \frac{1}{4}.
III. Integrals
I=12(x22x1)dx=[x33x2x]12=(8342)(1311)=83613+2=734=7123=53I = \int_1^2 (x^2 - 2x - 1) dx = [\frac{x^3}{3} - x^2 - x]_1^2 = (\frac{8}{3} - 4 - 2) - (\frac{1}{3} - 1 - 1) = \frac{8}{3} - 6 - \frac{1}{3} + 2 = \frac{7}{3} - 4 = \frac{7 - 12}{3} = -\frac{5}{3}.
J=0π2(sin3x+4sin4x)dx=[13cos3xcos4x]0π2=(13cos(3π2)cos(2π))(13cos(0)cos(0))=(01)(131)=1+13+1=13J = \int_0^{\frac{\pi}{2}} (\sin 3x + 4\sin 4x) dx = [-\frac{1}{3}\cos 3x - \cos 4x]_0^{\frac{\pi}{2}} = (-\frac{1}{3}\cos(\frac{3\pi}{2}) - \cos(2\pi)) - (-\frac{1}{3}\cos(0) - \cos(0)) = (0 - 1) - (-\frac{1}{3} - 1) = -1 + \frac{1}{3} + 1 = \frac{1}{3}.
K=sinxxdxK = \int \frac{\sin x}{x} dx This integral cannot be expressed in terms of elementary functions. It is related to the sine integral function, denoted as Si(x)=0xsinttdtSi(x) = \int_0^x \frac{\sin t}{t} dt. Thus, sinxxdx=Si(x)+C\int \frac{\sin x}{x} dx = Si(x) + C.
IV. Differential Equation
a) y+4y=0y'' + 4y = 0. Characteristic equation: r2+4=0r^2 + 4 = 0.
r2=4r^2 = -4, so r=±2ir = \pm 2i.
The general solution is y(x)=c1cos(2x)+c2sin(2x)y(x) = c_1\cos(2x) + c_2\sin(2x).
b) y(0)=2y(0) = 2, so c1cos(0)+c2sin(0)=2c_1\cos(0) + c_2\sin(0) = 2, which means c1=2c_1 = 2.
y(x)=2c1sin(2x)+2c2cos(2x)y'(x) = -2c_1\sin(2x) + 2c_2\cos(2x).
The tangent line at A(0,2)A(0, 2) has a slope of 2 (since it's parallel to y=2x1y = 2x - 1).
So, y(0)=2y'(0) = 2. Therefore, 2c1sin(0)+2c2cos(0)=2-2c_1\sin(0) + 2c_2\cos(0) = 2, which means 2c2=22c_2 = 2, so c2=1c_2 = 1.
The particular solution is y(x)=2cos(2x)+sin(2x)y(x) = 2\cos(2x) + \sin(2x).
V. 3D Geometry
a) Points A(1,1,3)A(1, -1, 3), B(0,3,1)B(0, 3, 1), D(2,1,3)D(2, 1, 3), E(4,6,2)E(4, -6, 2), C(6,7,1)C(6, -7, -1).
AB=1,4,2\vec{AB} = \langle -1, 4, -2 \rangle, AD=1,2,0\vec{AD} = \langle 1, 2, 0 \rangle
The normal vector to the plane ABDABD is n=AB×AD=ijk142120=i(0(4))j(0(2))+k(24)=4i2j6k=4,2,6\vec{n} = \vec{AB} \times \vec{AD} = \begin{vmatrix} i & j & k \\ -1 & 4 & -2 \\ 1 & 2 & 0 \end{vmatrix} = i(0 - (-4)) - j(0 - (-2)) + k(-2 - 4) = 4i - 2j - 6k = \langle 4, -2, -6 \rangle. We can divide this by 2 to simplify, giving us 2,1,3\langle 2, -1, -3\rangle.
The equation of the plane ABDABD is 2(x1)1(y+1)3(z3)=02(x - 1) - 1(y + 1) - 3(z - 3) = 0, which simplifies to 2x2y13z+9=02x - 2 - y - 1 - 3z + 9 = 0, or 2xy3z+6=02x - y - 3z + 6 = 0.
EC=64,7(6),12=2,1,3\vec{EC} = \langle 6-4, -7-(-6), -1-2 \rangle = \langle 2, -1, -3 \rangle.
Parametric equation of line (EC)(EC):
x=4+2tx = 4 + 2t, y=6ty = -6 - t, z=23tz = 2 - 3t.
b) The direction vector of line (EC)(EC) is EC=2,1,3\vec{EC} = \langle 2, -1, -3 \rangle. The normal vector to plane (ABD)(ABD) is n=2,1,3\vec{n} = \langle 2, -1, -3 \rangle. Since EC\vec{EC} is parallel to n\vec{n}, the line (EC)(EC) is orthogonal to the plane ABDABD.

3. Final Answer

I. a) Z1×Z2=434iZ_1 \times Z_2 = 4\sqrt{3} - 4i, Z1Z2=12i\frac{Z_1}{Z_2} = -\frac{1}{2}i
I. b) Z1×Z2=8(cos(11π6)+isin(11π6))Z_1 \times Z_2 = 8(\cos(\frac{11\pi}{6}) + i\sin(\frac{11\pi}{6})), Z1Z2=12(cos(3π2)+isin(3π2))\frac{Z_1}{Z_2} = \frac{1}{2}(\cos(\frac{3\pi}{2}) + i\sin(\frac{3\pi}{2}))
II. A=1A = 1, B=6B = -6, C=14C = \frac{1}{4}
III. I=53I = -\frac{5}{3}, J=13J = \frac{1}{3}, K=Si(x)+CK = Si(x) + C
IV. a) y(x)=c1cos(2x)+c2sin(2x)y(x) = c_1\cos(2x) + c_2\sin(2x)
IV. b) y(x)=2cos(2x)+sin(2x)y(x) = 2\cos(2x) + \sin(2x)
V. a) Plane (ABD):2xy3z+6=0(ABD): 2x - y - 3z + 6 = 0, Line (EC):x=4+2t,y=6t,z=23t(EC): x = 4 + 2t, y = -6 - t, z = 2 - 3t
V. b) (EC)(EC) is orthogonal to plane (ABD)(ABD).

Related problems in "Other"

We need to evaluate the expression: $\frac{sin(\frac{2\pi}{3}) + cos(\frac{\pi}{4})}{tan(\frac{\pi}{...

TrigonometryTrigonometric FunctionsExpression EvaluationRadians
2025/5/22

The problem has three parts: (i) Differentiate $y = 2x^3 \sin 2x$ with respect to $x$. (ii) Simplify...

DifferentiationProduct RuleExponentsComplex NumbersSimplificationComplex Conjugate
2025/5/8

We are given three problems: a) Given two sets $M$ and $N$, find their union and intersection. $M$ i...

Set TheoryArithmeticGeometryOrder of OperationsAnglesStraight LinesRatio and Proportion
2025/4/29

We are asked to prove the trigonometric identity: $1 - 2\cos^2{t} = \frac{\tan^2{t} - 1}{\tan^2{t} +...

TrigonometryTrigonometric IdentitiesProofs
2025/4/28

The problem is to simplify the expression $\sin^2{\alpha} + \sin{\alpha}\cos^2{\alpha}$.

TrigonometryTrigonometric IdentitiesExpression Simplification
2025/4/25

The problem defines a function $G$ that takes a student's first name as input and returns the number...

FunctionsString ManipulationCounting
2025/4/24

The problem asks to name the given organic compounds (alkanes) based on their structures and write o...

Organic ChemistryIsomersNomenclatureAlkanesStructural Formulas
2025/4/21

The problem description would clearly state what needs to be calculated or proven. For example: "Sol...

Mathematical FormulasUnspecified ProblemImage Analysis
2025/4/10

The image contains three questions. Let's address the questions one by one. Question 1: What is the ...

Computer ScienceInteger RepresentationComparison Operations
2025/4/4

The problem defines a function $C$ that takes time as input and returns a student's Monday class at ...

Function NotationFunctionsModeling
2025/4/4