First, we evaluate sin(32π). Since 32π is in the second quadrant, we have sin(32π)=sin(π−3π)=sin(3π)=23. Next, we evaluate cos(4π). We know that cos(4π)=22. Then, we evaluate tan(6π). We know that tan(6π)=cos(6π)sin(6π)=2321=31=33. Finally, we evaluate cot(6π). We know that cot(6π)=sin(6π)cos(6π)=2123=3. Now, we substitute these values into the expression:
tan(6π)−cot(6π)sin(32π)+cos(4π)=33−323+22=33−3323+2=3−2323+2=23+2⋅−233=−433(3+2)=(−43)(−43)3(3+2)(−43)=48−123(3+2)=48−12(3+6)=4−(3+6)=−43+6