We are asked to solve several optimization problems using Lagrange multipliers. 1. Find the minimum of $f(x, y) = x^2 + y^2$ subject to the constraint $g(x, y) = xy - 3 = 0$.

Applied MathematicsOptimizationLagrange MultipliersMultivariable Calculus
2025/5/12

1. Problem Description

We are asked to solve several optimization problems using Lagrange multipliers.

1. Find the minimum of $f(x, y) = x^2 + y^2$ subject to the constraint $g(x, y) = xy - 3 = 0$.

2. Find the maximum of $f(x, y) = xy$ subject to the constraint $g(x, y) = 4x^2 + 9y^2 - 36 = 0$.

3. Find the maximum of $f(x, y) = 4x^2 - 4xy + y^2$ subject to the constraint $x^2 + y^2 = 1$.

4. Find the minimum of $f(x, y) = x^2 + 4xy + y^2$ subject to the constraint $x - y - 6 = 0$.

5. Find the minimum of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $x + 3y - 2z = 12$.

6. Find the minimum of $f(x, y, z) = 4x - 2y + 3z$ subject to the constraint $2x^2 + y^2 - 3z = 0$.

7. What are the dimensions of the rectangular box, open at the top, that has maximum volume when the surface area is 48?

2. Solution Steps

1. $f(x, y) = x^2 + y^2$, $g(x, y) = xy - 3 = 0$

We use the method of Lagrange multipliers.
f=(2x,2y)\nabla f = (2x, 2y)
g=(y,x)\nabla g = (y, x)
2x=λy2x = \lambda y
2y=λx2y = \lambda x
xy=3xy = 3
From the first two equations, we have λ=2xy=2yx\lambda = \frac{2x}{y} = \frac{2y}{x}. Then 2x2=2y22x^2 = 2y^2, so x2=y2x^2 = y^2 and x=±yx = \pm y.
Since xy=3xy = 3, xx and yy have the same sign, so x=yx = y.
x2=3x^2 = 3, so x=±3x = \pm \sqrt{3}. Since x=yx=y, we have two points: (3,3)(\sqrt{3}, \sqrt{3}) and (3,3)(-\sqrt{3}, -\sqrt{3}).
f(3,3)=(3)2+(3)2=3+3=6f(\sqrt{3}, \sqrt{3}) = (\sqrt{3})^2 + (\sqrt{3})^2 = 3 + 3 = 6
f(3,3)=(3)2+(3)2=3+3=6f(-\sqrt{3}, -\sqrt{3}) = (-\sqrt{3})^2 + (-\sqrt{3})^2 = 3 + 3 = 6
Thus, the minimum value is
6.

2. $f(x, y) = xy$, $g(x, y) = 4x^2 + 9y^2 - 36 = 0$

f=(y,x)\nabla f = (y, x)
g=(8x,18y)\nabla g = (8x, 18y)
y=8λxy = 8\lambda x
x=18λyx = 18\lambda y
4x2+9y2=364x^2 + 9y^2 = 36
From the first two equations, λ=y8x=x18y\lambda = \frac{y}{8x} = \frac{x}{18y}, so 18y2=8x218y^2 = 8x^2 and 9y2=4x29y^2 = 4x^2, so 3y=±2x3y = \pm 2x.
Case 1: 3y=2x3y = 2x. x=32yx = \frac{3}{2}y.
4(32y)2+9y2=364(\frac{3}{2}y)^2 + 9y^2 = 36
4(94y2)+9y2=364(\frac{9}{4}y^2) + 9y^2 = 36
9y2+9y2=369y^2 + 9y^2 = 36
18y2=3618y^2 = 36
y2=2y^2 = 2, y=±2y = \pm \sqrt{2}.
If y=2y = \sqrt{2}, x=322x = \frac{3}{2}\sqrt{2}. If y=2y = -\sqrt{2}, x=322x = -\frac{3}{2}\sqrt{2}.
Case 2: 3y=2x3y = -2x. x=32yx = -\frac{3}{2}y.
4(32y)2+9y2=364(-\frac{3}{2}y)^2 + 9y^2 = 36
4(94y2)+9y2=364(\frac{9}{4}y^2) + 9y^2 = 36
9y2+9y2=369y^2 + 9y^2 = 36
18y2=3618y^2 = 36
y2=2y^2 = 2, y=±2y = \pm \sqrt{2}.
If y=2y = \sqrt{2}, x=322x = -\frac{3}{2}\sqrt{2}. If y=2y = -\sqrt{2}, x=322x = \frac{3}{2}\sqrt{2}.
Possible points: (322,2)(\frac{3}{2}\sqrt{2}, \sqrt{2}), (322,2)(-\frac{3}{2}\sqrt{2}, -\sqrt{2}), (322,2)(-\frac{3}{2}\sqrt{2}, \sqrt{2}), (322,2)(\frac{3}{2}\sqrt{2}, -\sqrt{2}).
f(322,2)=3222=3f(\frac{3}{2}\sqrt{2}, \sqrt{2}) = \frac{3}{2}\sqrt{2} \cdot \sqrt{2} = 3
f(322,2)=(322)(2)=3f(-\frac{3}{2}\sqrt{2}, -\sqrt{2}) = (-\frac{3}{2}\sqrt{2}) \cdot (-\sqrt{2}) = 3
f(322,2)=(322)(2)=3f(-\frac{3}{2}\sqrt{2}, \sqrt{2}) = (-\frac{3}{2}\sqrt{2}) \cdot (\sqrt{2}) = -3
f(322,2)=(322)(2)=3f(\frac{3}{2}\sqrt{2}, -\sqrt{2}) = (\frac{3}{2}\sqrt{2}) \cdot (-\sqrt{2}) = -3
The maximum value is
3.

3. $f(x, y) = 4x^2 - 4xy + y^2$, $g(x, y) = x^2 + y^2 - 1 = 0$

f=(8x4y,4x+2y)\nabla f = (8x - 4y, -4x + 2y)
g=(2x,2y)\nabla g = (2x, 2y)
8x4y=2λx8x - 4y = 2\lambda x
4x+2y=2λy-4x + 2y = 2\lambda y
x2+y2=1x^2 + y^2 = 1
4x2y=λx4x - 2y = \lambda x
2x+y=λy-2x + y = \lambda y
λ=4x2yx=2x+yy\lambda = \frac{4x - 2y}{x} = \frac{-2x + y}{y}
4xy2y2=2x2+xy4xy - 2y^2 = -2x^2 + xy
3xy2y2+2x2=03xy - 2y^2 + 2x^2 = 0
2x2+3xy2y2=02x^2 + 3xy - 2y^2 = 0
2x2+4xyxy2y2=02x^2 + 4xy - xy - 2y^2 = 0
2x(x+2y)y(x+2y)=02x(x + 2y) - y(x + 2y) = 0
(2xy)(x+2y)=0(2x - y)(x + 2y) = 0
Case 1: 2xy=02x - y = 0. y=2xy = 2x.
x2+(2x)2=1x^2 + (2x)^2 = 1
x2+4x2=1x^2 + 4x^2 = 1
5x2=15x^2 = 1
x2=15x^2 = \frac{1}{5}, x=±15x = \pm \frac{1}{\sqrt{5}}.
If x=15x = \frac{1}{\sqrt{5}}, y=25y = \frac{2}{\sqrt{5}}. If x=15x = -\frac{1}{\sqrt{5}}, y=25y = -\frac{2}{\sqrt{5}}.
Case 2: x+2y=0x + 2y = 0. x=2yx = -2y.
(2y)2+y2=1(-2y)^2 + y^2 = 1
4y2+y2=14y^2 + y^2 = 1
5y2=15y^2 = 1
y2=15y^2 = \frac{1}{5}, y=±15y = \pm \frac{1}{\sqrt{5}}.
If y=15y = \frac{1}{\sqrt{5}}, x=25x = -\frac{2}{\sqrt{5}}. If y=15y = -\frac{1}{\sqrt{5}}, x=25x = \frac{2}{\sqrt{5}}.
Possible points: (15,25)(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}), (15,25)(-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}), (25,15)(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}), (25,15)(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}).
f(x,y)=4x24xy+y2=(2xy)2f(x, y) = 4x^2 - 4xy + y^2 = (2x - y)^2
f(15,25)=(21525)2=0f(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) = (2\frac{1}{\sqrt{5}} - \frac{2}{\sqrt{5}})^2 = 0
f(15,25)=(2(15)(25))2=0f(-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}) = (2(-\frac{1}{\sqrt{5}}) - (-\frac{2}{\sqrt{5}}))^2 = 0
f(25,15)=(2(25)15)2=(55)2=255=5f(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}) = (2(-\frac{2}{\sqrt{5}}) - \frac{1}{\sqrt{5}})^2 = (-\frac{5}{\sqrt{5}})^2 = \frac{25}{5} = 5
f(25,15)=(2(25)(15))2=(55)2=255=5f(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}) = (2(\frac{2}{\sqrt{5}}) - (-\frac{1}{\sqrt{5}}))^2 = (\frac{5}{\sqrt{5}})^2 = \frac{25}{5} = 5
The maximum value is
5.

4. $f(x, y) = x^2 + 4xy + y^2$, $g(x, y) = x - y - 6 = 0$

f=(2x+4y,4x+2y)\nabla f = (2x + 4y, 4x + 2y)
g=(1,1)\nabla g = (1, -1)
2x+4y=λ2x + 4y = \lambda
4x+2y=λ4x + 2y = -\lambda
xy=6x - y = 6
2x+4y=(4x+2y)2x + 4y = -(4x + 2y)
2x+4y=4x2y2x + 4y = -4x - 2y
6x=6y6x = -6y
x=yx = -y
xy=6x - y = 6
yy=6-y - y = 6
2y=6-2y = 6
y=3y = -3
x=(3)=3x = -(-3) = 3
f(3,3)=(3)2+4(3)(3)+(3)2=936+9=18f(3, -3) = (3)^2 + 4(3)(-3) + (-3)^2 = 9 - 36 + 9 = -18
The minimum value is -
1
8.

5. $f(x, y, z) = x^2 + y^2 + z^2$, $g(x, y, z) = x + 3y - 2z - 12 = 0$

f=(2x,2y,2z)\nabla f = (2x, 2y, 2z)
g=(1,3,2)\nabla g = (1, 3, -2)
2x=λ2x = \lambda
2y=3λ2y = 3\lambda
2z=2λ2z = -2\lambda
x+3y2z=12x + 3y - 2z = 12
x=λ2x = \frac{\lambda}{2}
y=3λ2y = \frac{3\lambda}{2}
z=λz = -\lambda
λ2+3(3λ2)2(λ)=12\frac{\lambda}{2} + 3(\frac{3\lambda}{2}) - 2(-\lambda) = 12
λ2+9λ2+2λ=12\frac{\lambda}{2} + \frac{9\lambda}{2} + 2\lambda = 12
10λ2+2λ=12\frac{10\lambda}{2} + 2\lambda = 12
5λ+2λ=125\lambda + 2\lambda = 12
7λ=127\lambda = 12
λ=127\lambda = \frac{12}{7}
x=12(127)=67x = \frac{1}{2}(\frac{12}{7}) = \frac{6}{7}
y=32(127)=187y = \frac{3}{2}(\frac{12}{7}) = \frac{18}{7}
z=127z = -\frac{12}{7}
f(x,y,z)=(67)2+(187)2+(127)2=3649+32449+14449=50449=727f(x, y, z) = (\frac{6}{7})^2 + (\frac{18}{7})^2 + (-\frac{12}{7})^2 = \frac{36}{49} + \frac{324}{49} + \frac{144}{49} = \frac{504}{49} = \frac{72}{7}
The minimum value is 727\frac{72}{7}.

6. $f(x,y,z) = 4x-2y+3z$, $g(x,y,z) = 2x^2+y^2-3z=0$

f=(4,2,3)\nabla f = (4, -2, 3)
g=(4x,2y,3)\nabla g = (4x, 2y, -3)
4=4λx    x=1λ4 = 4\lambda x \implies x = \frac{1}{\lambda}
2=2λy    y=1λ-2 = 2\lambda y \implies y = -\frac{1}{\lambda}
3=3λ    λ=13 = -3\lambda \implies \lambda = -1
So x=1x = -1, y=1y=1, 2(1)2+(1)23z=02(-1)^2 + (1)^2 - 3z = 0, so 2+1=3z2+1=3z then 3z=33z = 3, so z=1z = 1.
f(1,1,1)=4(1)2(1)+3(1)=42+3=3f(-1, 1, 1) = 4(-1) - 2(1) + 3(1) = -4 - 2 + 3 = -3
The minimum value is -
3.

7. Let the dimensions be $x$, $y$, and $z$. The volume is $V = xyz$ and the surface area is $A = xy + 2xz + 2yz = 48$. We want to maximize $V$ subject to $A = 48$.

V=(yz,xz,xy)\nabla V = (yz, xz, xy)
A=(y+2z,x+2z,2x+2y)\nabla A = (y+2z, x+2z, 2x+2y)
yz=λ(y+2z)yz = \lambda (y+2z)
xz=λ(x+2z)xz = \lambda (x+2z)
xy=λ(2x+2y)xy = \lambda (2x+2y)
xy+2xz+2yz=48xy + 2xz + 2yz = 48
From yz=λ(y+2z)yz = \lambda(y+2z) and xz=λ(x+2z)xz = \lambda(x+2z), xyz=λx(y+2z)=λ(xy+2xz)xyz = \lambda x(y+2z) = \lambda(xy+2xz) and xyz=λy(x+2z)=λ(xy+2yz)xyz = \lambda y(x+2z) = \lambda(xy+2yz). So xy+2xz=xy+2yzxy+2xz = xy+2yz, 2xz=2yz2xz = 2yz and x=yx=y (since z>0z>0).
Then x2=λ(2x+2x)x^2 = \lambda(2x+2x), x2=4λxx^2 = 4\lambda x, x=4λx = 4\lambda.
Now x2+2xz+2xz=48x^2 + 2xz + 2xz = 48
x2+4xz=48x^2 + 4xz = 48
yz=λ(y+2z)    xz=λ(x+2z)yz = \lambda(y+2z) \implies xz = \lambda(x+2z). So xz=λ(x+2z)xz = \lambda(x+2z), xz=x/4(x+2z)xz = x/4 (x+2z). 4z=x+2z4z = x+2z so 2z=x2z = x.
Then x2+4x(x2)=48x^2 + 4x(\frac{x}{2}) = 48
x2+2x2=48x^2 + 2x^2 = 48
3x2=483x^2 = 48
x2=16x^2 = 16, x=4x=4.
Then y=4y=4 and z=x/2=4/2=2z=x/2 = 4/2 = 2.
Therefore the dimensions are 4, 4, and
2.

3. Final Answer

1. The minimum value is

6.

2. The maximum value is

3.

3. The maximum value is

5.

4. The minimum value is -

1
8.

5. The minimum value is 72/

7.

6. The minimum value is -

3.

7. The dimensions are 4, 4, and 2.

Related problems in "Applied Mathematics"

The problem describes the synthesis of proteins involving ribosomes moving along an mRNA molecule (A...

BiologyLinear EquationsUnits ConversionRate
2025/6/6

The problem asks to calculate the pressure exerted by a car on the road, given the total force exert...

PhysicsPressureForceAreaUnits
2025/6/5

The problem asks us to calculate the pressure exerted by a block on the ground in two different scen...

PhysicsPressureForceAreaUnits
2025/6/5

The problem provides the pressure exerted by a brick on a table ($240 \ N/m^2$) and the area of the ...

PhysicsPressureForceAreaUnits Conversion
2025/6/5

The problem describes an mRNA molecule (ARNm) consisting of 1800 ribonucleotides. This mRNA is used ...

BiologyBiochemistrymRNAProtein SynthesisLinear EquationsAlgebra
2025/6/5

The price of milk is currently $3.89 per gallon and has been increasing by 5% per year. We need to c...

Compound InterestPercentage IncreaseFinancial MathematicsExponential Growth
2025/6/4

The questions ask for: - Abu's share of the profit. - Ojo's share of the profit for the year. - The ...

Profit SharingAccountingFinancial Mathematics
2025/6/4

We are given some information from a bank statement and need to calculate the adjusted cash book bal...

AccountingFinancial StatementsCash BookBank ReconciliationGross Profit
2025/6/4

The problem provides information about a gene with a total molecular mass of 360,000 carbon units. A...

BiologyGeneticsMolecular BiologyBiochemistryNucleotide CalculationAmino Acid CalculationmRNA SequenceCodons
2025/6/4

A company produces two types of lamps, $L_1$ and $L_2$. Manufacturing $L_1$ requires 20 minutes of m...

Linear ProgrammingOptimizationConstraintsObjective Function
2025/6/4