The problem asks us to prove the following trigonometric identity: $\sqrt{\frac{1 + \cos A}{1 - \cos A}} = \csc A + \cot A$

TrigonometryTrigonometric IdentitiesProofAlgebraic ManipulationCosecantCotangent
2025/5/12

1. Problem Description

The problem asks us to prove the following trigonometric identity:
1+cosA1cosA=cscA+cotA\sqrt{\frac{1 + \cos A}{1 - \cos A}} = \csc A + \cot A

2. Solution Steps

We will start with the left-hand side (LHS) of the equation and try to manipulate it to match the right-hand side (RHS).
LHS: 1+cosA1cosA\sqrt{\frac{1 + \cos A}{1 - \cos A}}
Multiply the numerator and denominator inside the square root by (1+cosA)(1 + \cos A):
1+cosA1cosA1+cosA1+cosA=(1+cosA)2(1cosA)(1+cosA)\sqrt{\frac{1 + \cos A}{1 - \cos A} \cdot \frac{1 + \cos A}{1 + \cos A}} = \sqrt{\frac{(1 + \cos A)^2}{(1 - \cos A)(1 + \cos A)}}
Using the difference of squares formula, (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2, we have:
(1+cosA)21cos2A\sqrt{\frac{(1 + \cos A)^2}{1 - \cos^2 A}}
Using the Pythagorean trigonometric identity, sin2A+cos2A=1\sin^2 A + \cos^2 A = 1, we can rewrite 1cos2A1 - \cos^2 A as sin2A\sin^2 A:
(1+cosA)2sin2A\sqrt{\frac{(1 + \cos A)^2}{\sin^2 A}}
Now, we can take the square root of both the numerator and the denominator:
1+cosAsinA\frac{1 + \cos A}{\sin A}
Split the fraction into two parts:
1sinA+cosAsinA\frac{1}{\sin A} + \frac{\cos A}{\sin A}
Recall the definitions of cosecant and cotangent:
cscA=1sinA\csc A = \frac{1}{\sin A}
cotA=cosAsinA\cot A = \frac{\cos A}{\sin A}
Therefore, we have:
cscA+cotA\csc A + \cot A
Which is equal to the RHS.

3. Final Answer

1+cosA1cosA=cscA+cotA\sqrt{\frac{1 + \cos A}{1 - \cos A}} = \csc A + \cot A
The given identity is proven.

Related problems in "Trigonometry"

The problem asks to simplify the trigonometric expression: $\frac{sin(\frac{\pi}{4}) - 2tan(\frac{\p...

Trigonometric FunctionsSimplificationTrigonometric Identities
2025/5/22

We need to evaluate the expression $\frac{\sin(\frac{2\pi}{3}) + \cos(\frac{\pi}{4})}{\sin(\frac{\pi...

TrigonometryTrigonometric FunctionsUnit CircleExpression Evaluation
2025/5/22

The problem asks to find which trigonometric ratio is equivalent to a trigonometric ratio of an angl...

TrigonometryTrigonometric IdentitiesAngle ConversionSineCosineTangent
2025/5/19

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCotangentSimplification
2025/5/13

The problem states that $5\cos{A} + 3 = 0$ and $180^\circ < A < 360^\circ$. We need to determine the...

TrigonometryTrigonometric IdentitiesUnit CircleQuadrant AnalysisSineCosineTangent
2025/5/12

The problem asks us to determine the quadrant in which the terminal arm of angle $\theta$ lies, give...

TrigonometryQuadrantsSineCosineTangentAngle Measurement
2025/5/12

The problem asks us to prove the trigonometric identity: $\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{...

Trigonometric IdentitiesProofAlgebraic Manipulation
2025/5/11

The first question asks which of the following expressions properly expresses $cos(120^\circ)$ using...

TrigonometryCompound Angle FormulaSine RuleCosine RuleAngle Sum and Difference IdentitiesRadians
2025/5/7

The problem asks us to find the value of $\tan(\frac{2\pi}{3})$. And the second problem asks to simp...

TrigonometryTangent FunctionAngle IdentitiesDouble Angle Formula
2025/5/7

The question asks which of the given trigonometric expressions is equivalent to $\frac{\sqrt{3}}{2}$...

Trigonometric IdentitiesTrigonometric FunctionsCosine FunctionPeriodicityOptimization
2025/5/7