The problem states that $5\cos{A} + 3 = 0$ and $180^\circ < A < 360^\circ$. We need to determine the values of $\tan^2{A}$ and $\frac{\sin{A}}{\cos{A}}$.

TrigonometryTrigonometryTrigonometric IdentitiesUnit CircleQuadrant AnalysisSineCosineTangent
2025/5/12

1. Problem Description

The problem states that 5cosA+3=05\cos{A} + 3 = 0 and 180<A<360180^\circ < A < 360^\circ. We need to determine the values of tan2A\tan^2{A} and sinAcosA\frac{\sin{A}}{\cos{A}}.

2. Solution Steps

First, we solve for cosA\cos{A}:
5cosA+3=05\cos{A} + 3 = 0
5cosA=35\cos{A} = -3
cosA=35\cos{A} = -\frac{3}{5}
Since 180<A<360180^\circ < A < 360^\circ, AA is in the third or fourth quadrant. Since cosA=35<0\cos{A} = -\frac{3}{5} < 0, AA must be in the third quadrant. Therefore, sinA<0\sin{A} < 0 in this quadrant.
We use the Pythagorean identity sin2A+cos2A=1\sin^2{A} + \cos^2{A} = 1 to find sinA\sin{A}:
sin2A+(35)2=1\sin^2{A} + \left(-\frac{3}{5}\right)^2 = 1
sin2A+925=1\sin^2{A} + \frac{9}{25} = 1
sin2A=1925\sin^2{A} = 1 - \frac{9}{25}
sin2A=1625\sin^2{A} = \frac{16}{25}
sinA=±45\sin{A} = \pm\frac{4}{5}
Since AA is in the third quadrant, sinA<0\sin{A} < 0, so sinA=45\sin{A} = -\frac{4}{5}.
Now we can find tanA\tan{A}:
tanA=sinAcosA=4535=43\tan{A} = \frac{\sin{A}}{\cos{A}} = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3}
(a) tan2A=(43)2=169\tan^2{A} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}
(b) sinAcosA=tanA=43\frac{\sin{A}}{\cos{A}} = \tan{A} = \frac{4}{3}

3. Final Answer

(a) tan2A=169\tan^2{A} = \frac{16}{9}
(b) sinAcosA=43\frac{\sin{A}}{\cos{A}} = \frac{4}{3}

Related problems in "Trigonometry"

The problem asks to simplify the trigonometric expression: $\frac{sin(\frac{\pi}{4}) - 2tan(\frac{\p...

Trigonometric FunctionsSimplificationTrigonometric Identities
2025/5/22

We need to evaluate the expression $\frac{\sin(\frac{2\pi}{3}) + \cos(\frac{\pi}{4})}{\sin(\frac{\pi...

TrigonometryTrigonometric FunctionsUnit CircleExpression Evaluation
2025/5/22

The problem asks to find which trigonometric ratio is equivalent to a trigonometric ratio of an angl...

TrigonometryTrigonometric IdentitiesAngle ConversionSineCosineTangent
2025/5/19

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCotangentSimplification
2025/5/13

The problem asks us to determine the quadrant in which the terminal arm of angle $\theta$ lies, give...

TrigonometryQuadrantsSineCosineTangentAngle Measurement
2025/5/12

The problem asks us to prove the following trigonometric identity: $\sqrt{\frac{1 + \cos A}{1 - \cos...

Trigonometric IdentitiesProofAlgebraic ManipulationCosecantCotangent
2025/5/12

The problem asks us to prove the trigonometric identity: $\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{...

Trigonometric IdentitiesProofAlgebraic Manipulation
2025/5/11

The first question asks which of the following expressions properly expresses $cos(120^\circ)$ using...

TrigonometryCompound Angle FormulaSine RuleCosine RuleAngle Sum and Difference IdentitiesRadians
2025/5/7

The problem asks us to find the value of $\tan(\frac{2\pi}{3})$. And the second problem asks to simp...

TrigonometryTangent FunctionAngle IdentitiesDouble Angle Formula
2025/5/7

The question asks which of the given trigonometric expressions is equivalent to $\frac{\sqrt{3}}{2}$...

Trigonometric IdentitiesTrigonometric FunctionsCosine FunctionPeriodicityOptimization
2025/5/7