a) x2+2=18 x2=18−2 x=±16 b) y2−5=22 y2=22+5 y=±27 y=±33 c) 9−x2=5 x=±4 d) 7−4t2=18t2 7=18t2+4t2 t2=227 t=±227 t=±22154 e) 12x2−7=−7 12x2=−7+7 f) 2.25a2+15=12 2.25a2=12−15 2.25a2=−3 a2=2.25−3=−34 Since a2 cannot be negative for real numbers, there is no real solution. g) 2t+8=t(2+3t) 2t+8=2t+3t2 t2=38 t=±38 t=±322=±326 h) x(2x−6)=4−6x 2x2−6x=4−6x 2x2−6x+6x−4=0 2x2−4=0 x=±2 i) z(z2+8)=0 So either z=0 or z2+8=0. z2=−8, which means z=±−8=±2i2. If we only consider real solutions, then z=0. j) 7x(3x+5)−11=5x(2x+7) 21x2+35x−11=10x2+35x 21x2−10x2+35x−35x−11=0 11x2−11=0 k) (x+3)2−7x+8=(x−5)(x+5)−x x2+6x+9−7x+8=x2−25−x x2−x+17=x2−x−25 This is a contradiction, so there is no solution.