We are asked to solve the given equations for their respective variables. The equations are: a) $x^2 + 2 = 18$ b) $y^2 - 5 = 22$ c) $9 - x^2 = 5$ d) $7 - 4t^2 = 18t^2$ e) $12x^2 - 7 = -7$ f) $2.25a^2 + 15 = 12$ g) $2t + 8 = t(2 + 3t)$ h) $x(2x - 6) = 4 - 6x$ i) $z(z^2 + 8) = 0$ j) $7x(3x + 5) - 11 = 5x(2x + 7)$ k) $(x + 3)^2 - 7x + 8 = (x - 5)(x + 5) - x$

AlgebraEquationsQuadratic EquationsSolving EquationsVariables
2025/5/12

1. Problem Description

We are asked to solve the given equations for their respective variables. The equations are:
a) x2+2=18x^2 + 2 = 18
b) y25=22y^2 - 5 = 22
c) 9x2=59 - x^2 = 5
d) 74t2=18t27 - 4t^2 = 18t^2
e) 12x27=712x^2 - 7 = -7
f) 2.25a2+15=122.25a^2 + 15 = 12
g) 2t+8=t(2+3t)2t + 8 = t(2 + 3t)
h) x(2x6)=46xx(2x - 6) = 4 - 6x
i) z(z2+8)=0z(z^2 + 8) = 0
j) 7x(3x+5)11=5x(2x+7)7x(3x + 5) - 11 = 5x(2x + 7)
k) (x+3)27x+8=(x5)(x+5)x(x + 3)^2 - 7x + 8 = (x - 5)(x + 5) - x

2. Solution Steps

a) x2+2=18x^2 + 2 = 18
x2=182x^2 = 18 - 2
x2=16x^2 = 16
x=±16x = \pm \sqrt{16}
x=±4x = \pm 4
b) y25=22y^2 - 5 = 22
y2=22+5y^2 = 22 + 5
y2=27y^2 = 27
y=±27y = \pm \sqrt{27}
y=±33y = \pm 3\sqrt{3}
c) 9x2=59 - x^2 = 5
95=x29 - 5 = x^2
x2=4x^2 = 4
x=±4x = \pm \sqrt{4}
x=±2x = \pm 2
d) 74t2=18t27 - 4t^2 = 18t^2
7=18t2+4t27 = 18t^2 + 4t^2
7=22t27 = 22t^2
t2=722t^2 = \frac{7}{22}
t=±722t = \pm \sqrt{\frac{7}{22}}
t=±15422t = \pm \frac{\sqrt{154}}{22}
e) 12x27=712x^2 - 7 = -7
12x2=7+712x^2 = -7 + 7
12x2=012x^2 = 0
x2=0x^2 = 0
x=0x = 0
f) 2.25a2+15=122.25a^2 + 15 = 12
2.25a2=12152.25a^2 = 12 - 15
2.25a2=32.25a^2 = -3
a2=32.25=43a^2 = \frac{-3}{2.25} = -\frac{4}{3}
Since a2a^2 cannot be negative for real numbers, there is no real solution.
g) 2t+8=t(2+3t)2t + 8 = t(2 + 3t)
2t+8=2t+3t22t + 8 = 2t + 3t^2
3t2=83t^2 = 8
t2=83t^2 = \frac{8}{3}
t=±83t = \pm \sqrt{\frac{8}{3}}
t=±223=±263t = \pm \frac{2\sqrt{2}}{\sqrt{3}} = \pm \frac{2\sqrt{6}}{3}
h) x(2x6)=46xx(2x - 6) = 4 - 6x
2x26x=46x2x^2 - 6x = 4 - 6x
2x26x+6x4=02x^2 - 6x + 6x - 4 = 0
2x24=02x^2 - 4 = 0
2x2=42x^2 = 4
x2=2x^2 = 2
x=±2x = \pm \sqrt{2}
i) z(z2+8)=0z(z^2 + 8) = 0
So either z=0z = 0 or z2+8=0z^2 + 8 = 0.
z2=8z^2 = -8, which means z=±8=±2i2z = \pm \sqrt{-8} = \pm 2i\sqrt{2}.
If we only consider real solutions, then z=0z = 0.
j) 7x(3x+5)11=5x(2x+7)7x(3x + 5) - 11 = 5x(2x + 7)
21x2+35x11=10x2+35x21x^2 + 35x - 11 = 10x^2 + 35x
21x210x2+35x35x11=021x^2 - 10x^2 + 35x - 35x - 11 = 0
11x211=011x^2 - 11 = 0
11x2=1111x^2 = 11
x2=1x^2 = 1
x=±1x = \pm 1
k) (x+3)27x+8=(x5)(x+5)x(x + 3)^2 - 7x + 8 = (x - 5)(x + 5) - x
x2+6x+97x+8=x225xx^2 + 6x + 9 - 7x + 8 = x^2 - 25 - x
x2x+17=x2x25x^2 - x + 17 = x^2 - x - 25
17=2517 = -25
This is a contradiction, so there is no solution.

3. Final Answer

a) x=±4x = \pm 4
b) y=±33y = \pm 3\sqrt{3}
c) x=±2x = \pm 2
d) t=±15422t = \pm \frac{\sqrt{154}}{22}
e) x=0x = 0
f) No real solution
g) t=±263t = \pm \frac{2\sqrt{6}}{3}
h) x=±2x = \pm \sqrt{2}
i) z=0z = 0 (real solution)
j) x=±1x = \pm 1
k) No solution

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12