We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi < x < \pi$.

AnalysisFourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

1. Problem Description

We want to find the Fourier series representation of the function f(x)=xf(x) = x on the interval π<x<π-\pi < x < \pi.

2. Solution Steps

The Fourier series of a function f(x)f(x) defined on the interval (L,L)(-L, L) is given by:
f(x)=a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L})]
where the coefficients are:
a0=1LLLf(x)dxa_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx
In our case, f(x)=xf(x) = x and L=πL = \pi.
First, we compute a0a_0:
a0=1πππxdx=1π[x22]ππ=1π(π22π22)=0a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x dx = \frac{1}{\pi} [\frac{x^2}{2}]_{-\pi}^{\pi} = \frac{1}{\pi} (\frac{\pi^2}{2} - \frac{\pi^2}{2}) = 0
Next, we compute ana_n:
an=1πππxcos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) dx
Since xcos(nx)x\cos(nx) is an odd function and we are integrating over a symmetric interval, the integral is

0. Therefore, $a_n = 0$ for all $n$.

Finally, we compute bnb_n:
bn=1πππxsin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx
Since xsin(nx)x\sin(nx) is an even function, we can write:
bn=2π0πxsin(nx)dxb_n = \frac{2}{\pi} \int_{0}^{\pi} x \sin(nx) dx
Using integration by parts, let u=xu = x and dv=sin(nx)dxdv = \sin(nx) dx. Then du=dxdu = dx and v=1ncos(nx)v = -\frac{1}{n} \cos(nx).
xsin(nx)dx=xncos(nx)+1ncos(nx)dx=xncos(nx)+1n2sin(nx)\int x \sin(nx) dx = -\frac{x}{n} \cos(nx) + \int \frac{1}{n} \cos(nx) dx = -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx)
Thus,
bn=2π[xncos(nx)+1n2sin(nx)]0π=2π[πncos(nπ)+1n2sin(nπ)(0+0)]b_n = \frac{2}{\pi} [-\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx)]_0^{\pi} = \frac{2}{\pi} [-\frac{\pi}{n} \cos(n\pi) + \frac{1}{n^2} \sin(n\pi) - (0 + 0)]
Since sin(nπ)=0\sin(n\pi) = 0 and cos(nπ)=(1)n\cos(n\pi) = (-1)^n, we have:
bn=2π[πn(1)n]=2n(1)n+1b_n = \frac{2}{\pi} [-\frac{\pi}{n} (-1)^n] = \frac{2}{n} (-1)^{n+1}
Therefore, the Fourier series is:
f(x)=n=1bnsin(nx)=n=12n(1)n+1sin(nx)f(x) = \sum_{n=1}^{\infty} b_n \sin(nx) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin(nx)
f(x)=2[sin(x)sin(2x)2+sin(3x)3sin(4x)4+]f(x) = 2 [\sin(x) - \frac{\sin(2x)}{2} + \frac{\sin(3x)}{3} - \frac{\sin(4x)}{4} + \dots]

3. Final Answer

f(x)=2n=1(1)n+1nsin(nx)f(x) = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)

Related problems in "Analysis"

The problem asks us to determine the volume of a sphere with radius $r$ using integration.

IntegrationVolume CalculationSphereCalculus
2025/5/13

We are given the functions $f$ and $g$ defined on the interval $[-1, 5]$ as follows: $f(x) = \begin{...

Definite IntegralsPiecewise FunctionsIntegration
2025/5/13

The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interva...

Fourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

The problem states that a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2...

Fourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/13

We are asked to construct the Fourier series for the function $f(x) = x$ on the interval $-\pi < x <...

Fourier SeriesIntegrationTrigonometric Functions
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13