The problem asks to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi < x < \pi$.

AnalysisFourier SeriesCalculusIntegrationTrigonometric Functions
2025/5/13

1. Problem Description

The problem asks to find the Fourier series representation of the function f(x)=xf(x) = x on the interval π<x<π-\pi < x < \pi.

2. Solution Steps

The Fourier series of a function f(x)f(x) defined on the interval (L,L)(-L, L) is given by
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL)), f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right),
where the Fourier coefficients are given by
a0=1LLLf(x)dx, a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx,
an=1LLLf(x)cos(nπxL)dx, a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx,
bn=1LLLf(x)sin(nπxL)dx. b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.
In our case, f(x)=xf(x) = x and L=πL = \pi.
First, we compute a0a_0:
a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x dx = \frac{1}{\pi} \left[ \frac{x^2}{2} \right]_{-\pi}^{\pi} = \frac{1}{\pi} \left( \frac{\pi^2}{2} - \frac{(-\pi)^2}{2} \right) = \frac{1}{\pi} (0) =

0. $$

Next, we compute ana_n:
an=1πππxcos(nx)dx. a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) dx.
Since xx is an odd function and cos(nx)\cos(nx) is an even function, their product xcos(nx)x \cos(nx) is an odd function. The integral of an odd function over a symmetric interval (π,π)(-\pi, \pi) is zero.
a_n =

0. $$

Now, we compute bnb_n:
bn=1πππxsin(nx)dx. b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx.
Since xx is an odd function and sin(nx)\sin(nx) is also an odd function, their product xsin(nx)x \sin(nx) is an even function. Therefore,
bn=2π0πxsin(nx)dx. b_n = \frac{2}{\pi} \int_{0}^{\pi} x \sin(nx) dx.
We can use integration by parts: let u=xu = x and dv=sin(nx)dxdv = \sin(nx) dx. Then du=dxdu = dx and v=1ncos(nx)v = -\frac{1}{n} \cos(nx).
xsin(nx)dx=xncos(nx)+1ncos(nx)dx=xncos(nx)+1n2sin(nx). \int x \sin(nx) dx = -\frac{x}{n} \cos(nx) + \int \frac{1}{n} \cos(nx) dx = -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx).
So,
\begin{align*} b_n &= \frac{2}{\pi} \left[ -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) \right]_{0}^{\pi} \\ &= \frac{2}{\pi} \left( -\frac{\pi}{n} \cos(n\pi) + \frac{1}{n^2} \sin(n\pi) - (0 + 0) \right) \\ &= \frac{2}{\pi} \left( -\frac{\pi}{n} (-1)^n \right) = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}. \end{align*}
Therefore, the Fourier series is
f(x)=n=1bnsin(nx)=n=12n(1)n+1sin(nx)=2n=1(1)n+1nsin(nx). f(x) = \sum_{n=1}^{\infty} b_n \sin(nx) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin(nx) = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx).

3. Final Answer

The Fourier series of f(x)=xf(x) = x on π<x<π-\pi < x < \pi is
f(x)=2n=1(1)n+1nsin(nx)f(x) = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx).

Related problems in "Analysis"

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3

We are given a graph of a function and asked to find the intervals where the function is increasing,...

Function AnalysisIntervalsIncreasing/Decreasing/ConstantDomainRangeGraph Interpretation
2025/7/3

The problem asks us to identify the intervals where the given function is increasing and decreasing,...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraph Interpretation
2025/7/3

The problem asks us to determine the intervals where the given function is increasing and decreasing...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraphing
2025/7/3

The problem asks us to identify the interval on which the given function is decreasing. The x-coordi...

Function AnalysisDecreasing FunctionIntervalGraphing
2025/7/3

The problem asks us to determine the intervals on which the given function is increasing and decreas...

Increasing and Decreasing FunctionsCalculusIntervalsDerivatives (implicitly)
2025/7/3

The problem asks us to draw the tangent line to the curve $y = 3x^5 - 5x^4$ at the inflection point ...

CalculusDerivativesTangent LinesInflection PointsCurve Analysis
2025/6/29

The problem asks us to determine the concavity of the given curves and find their inflection points,...

CalculusDerivativesSecond DerivativeConcavityInflection Points
2025/6/29

The problem asks to find the following limits of the function $f(x)$ based on the given graph: $\lim...

LimitsFunctionsGraphical AnalysisAsymptotes
2025/6/28