The image presents a series of physics problems related to circuits involving capacitors, inductors, and resistors (RL and LC circuits). We'll solve part V regarding the solenoid: a. Calculate the inductance of the solenoid. b. Calculate the resistance of the wire. c. Calculate the time constant of the RL circuit. d. Calculate the magnetic field inside the solenoid. e. Calculate the magnetic energy stored in the solenoid. Given: solenoid length $l = 62.8 \text{ cm} = 0.628 \text{ m}$, diameter $d = 8 \text{ cm} = 0.08 \text{ m}$, wire diameter $d_w = 1.256 \text{ mm} = 1.256 \times 10^{-3} \text{ m}$, voltage $V = 3.2 \text{ V}$, permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ T}\cdot \text{m/A}$, resistivity $\rho = 1.6 \mu\Omega\cdot \text{cm} = 1.6 \times 10^{-8} \Omega\cdot \text{m}$.

Applied MathematicsPhysicsElectromagnetismCircuitsInductorsSolenoidRL CircuitMagnetic FieldInductanceResistanceTime ConstantMagnetic Energy
2025/5/17

1. Problem Description

The image presents a series of physics problems related to circuits involving capacitors, inductors, and resistors (RL and LC circuits). We'll solve part V regarding the solenoid:
a. Calculate the inductance of the solenoid.
b. Calculate the resistance of the wire.
c. Calculate the time constant of the RL circuit.
d. Calculate the magnetic field inside the solenoid.
e. Calculate the magnetic energy stored in the solenoid.
Given: solenoid length l=62.8 cm=0.628 ml = 62.8 \text{ cm} = 0.628 \text{ m}, diameter d=8 cm=0.08 md = 8 \text{ cm} = 0.08 \text{ m}, wire diameter dw=1.256 mm=1.256×103 md_w = 1.256 \text{ mm} = 1.256 \times 10^{-3} \text{ m}, voltage V=3.2 VV = 3.2 \text{ V}, permeability of free space μ0=4π×107 Tm/A\mu_0 = 4\pi \times 10^{-7} \text{ T}\cdot \text{m/A}, resistivity ρ=1.6μΩcm=1.6×108Ωm\rho = 1.6 \mu\Omega\cdot \text{cm} = 1.6 \times 10^{-8} \Omega\cdot \text{m}.

2. Solution Steps

a. Calculate the inductance of the solenoid.
First, find the number of turns NN. Since the wires are wound tightly next to each other, the number of turns is the length of the solenoid divided by the diameter of the wire:
N=ldw=0.6281.256×103=500N = \frac{l}{d_w} = \frac{0.628}{1.256 \times 10^{-3}} = 500.
The inductance LL of a solenoid is given by:
L=μ0N2AlL = \frac{\mu_0 N^2 A}{l}, where A=πr2A = \pi r^2 is the cross-sectional area and r=d/2r = d/2 is the radius.
r=0.082=0.04 mr = \frac{0.08}{2} = 0.04 \text{ m}
A=π(0.04)2=π(0.0016)0.0050265 m2A = \pi (0.04)^2 = \pi (0.0016) \approx 0.0050265 \text{ m}^2
L=(4π×107)(500)2(0.0050265)0.628=4π×107×250000×0.00502650.628=0.0015790.6280.002514 H=2.514 mHL = \frac{(4\pi \times 10^{-7}) (500)^2 (0.0050265)}{0.628} = \frac{4\pi \times 10^{-7} \times 250000 \times 0.0050265}{0.628} = \frac{0.001579}{0.628} \approx 0.002514 \text{ H} = 2.514 \text{ mH}
b. Calculate the resistance of the wire.
First, find the length of the wire lwl_w used to wind the solenoid:
lw=N×2πr=500×2π(0.04)=500×0.2513=125.66 ml_w = N \times 2\pi r = 500 \times 2\pi (0.04) = 500 \times 0.2513 = 125.66 \text{ m}
The resistance RR of the wire is given by:
R=ρlwAwR = \frac{\rho l_w}{A_w}, where AwA_w is the cross-sectional area of the wire.
Aw=π(dw/2)2=π(1.256×103/2)2=π(0.628×103)2=π(3.94384×107)1.2397×106 m2A_w = \pi (d_w/2)^2 = \pi (1.256 \times 10^{-3}/2)^2 = \pi (0.628 \times 10^{-3})^2 = \pi (3.94384 \times 10^{-7}) \approx 1.2397 \times 10^{-6} \text{ m}^2
R=(1.6×108)(125.66)1.2397×106=2.01056×1061.2397×1061.6218ΩR = \frac{(1.6 \times 10^{-8})(125.66)}{1.2397 \times 10^{-6}} = \frac{2.01056 \times 10^{-6}}{1.2397 \times 10^{-6}} \approx 1.6218 \Omega
c. Calculate the time constant of the RL circuit.
The time constant τ\tau of an RL circuit is given by:
τ=LR=0.0025141.62180.00155 s=1.55 ms\tau = \frac{L}{R} = \frac{0.002514}{1.6218} \approx 0.00155 \text{ s} = 1.55 \text{ ms}
d. Calculate the magnetic field inside the solenoid.
The magnetic field BB inside a solenoid is given by:
B=μ0NlIB = \mu_0 \frac{N}{l} I
First, find the current II using Ohm's law: V=IRV = IR, so I=VR=3.21.62181.973 AI = \frac{V}{R} = \frac{3.2}{1.6218} \approx 1.973 \text{ A}
B=(4π×107)5000.628(1.973)=(4π×107)(796.178)(1.973)1.968×103 T=1.968 mTB = (4\pi \times 10^{-7}) \frac{500}{0.628} (1.973) = (4\pi \times 10^{-7}) (796.178) (1.973) \approx 1.968 \times 10^{-3} \text{ T} = 1.968 \text{ mT}
e. Calculate the magnetic energy stored in the solenoid.
The magnetic energy UU stored in an inductor is given by:
U=12LI2=12(0.002514)(1.973)2=12(0.002514)(3.892729)0.00489 J=4.89 mJU = \frac{1}{2} LI^2 = \frac{1}{2} (0.002514) (1.973)^2 = \frac{1}{2} (0.002514) (3.892729) \approx 0.00489 \text{ J} = 4.89 \text{ mJ}

3. Final Answer

a. Inductance: L=2.514 mHL = 2.514 \text{ mH}
b. Resistance: R=1.6218ΩR = 1.6218 \Omega
c. Time constant: τ=1.55 ms\tau = 1.55 \text{ ms}
d. Magnetic field: B=1.968 mTB = 1.968 \text{ mT}
e. Magnetic energy: U=4.89 mJU = 4.89 \text{ mJ}

Related problems in "Applied Mathematics"

The problem asks us to fill in the blanks with either $g$ (grams) or $kg$ (kilograms) to make the st...

Units of MeasurementWeightConversion
2025/7/17

Warda walks at an average speed of 3 km/hr for 45 minutes before running for half an hour at a certa...

Word ProblemDistanceSpeedTimeRateLinear Equations
2025/7/16

Determine the vertical displacement at the point $I$ of the given structure, due to the effect of th...

Structural AnalysisDeflectionBeam TheoryVirtual WorkEngineering Mechanics
2025/7/16

The problem asks to determine the vertical displacement at point I (which I assume is at the top of ...

Structural MechanicsCastigliano's TheoremBeam BendingStrain EnergyDeflectionIntegration
2025/7/16

The problem asks to determine the vertical displacement at a point "I" (likely implied as the midpoi...

Structural MechanicsBeam DeflectionFlexural RigidityUniformly Distributed Load (UDL)ElasticityVirtual WorkCastigliano's Theorem
2025/7/16

The problem asks us to determine the vertical displacement at a point I (assumed to be a point withi...

Structural MechanicsFinite Element AnalysisVirtual WorkBending MomentDeflectionEngineering
2025/7/16

The problem describes a lottery win of $1,000,000 and presents several options for receiving the pri...

Financial MathematicsPresent ValueAnnuityPerpetuityDiscount Rate
2025/7/16

The problem consists of two parts: (a) An aircraft flies at different speeds and bearings for certai...

TrigonometryDifferentiationDistanceBearingAircraft Navigation
2025/7/15

The problem presents a line graph showing the distance of taxi driver Joe from his home over a 12-ho...

Graph InterpretationDistanceRate of ChangeReal-World Application
2025/7/15

The problem asks to solve a circuit using Kirchhoff's laws. The circuit consists of two voltage sour...

Circuit AnalysisKirchhoff's LawsThevenin's TheoremNorton's TheoremElectrical Engineering
2025/7/14