The image presents a series of physics problems related to circuits involving capacitors, inductors, and resistors (RL and LC circuits). We'll solve part V regarding the solenoid: a. Calculate the inductance of the solenoid. b. Calculate the resistance of the wire. c. Calculate the time constant of the RL circuit. d. Calculate the magnetic field inside the solenoid. e. Calculate the magnetic energy stored in the solenoid. Given: solenoid length $l = 62.8 \text{ cm} = 0.628 \text{ m}$, diameter $d = 8 \text{ cm} = 0.08 \text{ m}$, wire diameter $d_w = 1.256 \text{ mm} = 1.256 \times 10^{-3} \text{ m}$, voltage $V = 3.2 \text{ V}$, permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ T}\cdot \text{m/A}$, resistivity $\rho = 1.6 \mu\Omega\cdot \text{cm} = 1.6 \times 10^{-8} \Omega\cdot \text{m}$.

Applied MathematicsPhysicsElectromagnetismCircuitsInductorsSolenoidRL CircuitMagnetic FieldInductanceResistanceTime ConstantMagnetic Energy
2025/5/17

1. Problem Description

The image presents a series of physics problems related to circuits involving capacitors, inductors, and resistors (RL and LC circuits). We'll solve part V regarding the solenoid:
a. Calculate the inductance of the solenoid.
b. Calculate the resistance of the wire.
c. Calculate the time constant of the RL circuit.
d. Calculate the magnetic field inside the solenoid.
e. Calculate the magnetic energy stored in the solenoid.
Given: solenoid length l=62.8 cm=0.628 ml = 62.8 \text{ cm} = 0.628 \text{ m}, diameter d=8 cm=0.08 md = 8 \text{ cm} = 0.08 \text{ m}, wire diameter dw=1.256 mm=1.256×103 md_w = 1.256 \text{ mm} = 1.256 \times 10^{-3} \text{ m}, voltage V=3.2 VV = 3.2 \text{ V}, permeability of free space μ0=4π×107 Tm/A\mu_0 = 4\pi \times 10^{-7} \text{ T}\cdot \text{m/A}, resistivity ρ=1.6μΩcm=1.6×108Ωm\rho = 1.6 \mu\Omega\cdot \text{cm} = 1.6 \times 10^{-8} \Omega\cdot \text{m}.

2. Solution Steps

a. Calculate the inductance of the solenoid.
First, find the number of turns NN. Since the wires are wound tightly next to each other, the number of turns is the length of the solenoid divided by the diameter of the wire:
N=ldw=0.6281.256×103=500N = \frac{l}{d_w} = \frac{0.628}{1.256 \times 10^{-3}} = 500.
The inductance LL of a solenoid is given by:
L=μ0N2AlL = \frac{\mu_0 N^2 A}{l}, where A=πr2A = \pi r^2 is the cross-sectional area and r=d/2r = d/2 is the radius.
r=0.082=0.04 mr = \frac{0.08}{2} = 0.04 \text{ m}
A=π(0.04)2=π(0.0016)0.0050265 m2A = \pi (0.04)^2 = \pi (0.0016) \approx 0.0050265 \text{ m}^2
L=(4π×107)(500)2(0.0050265)0.628=4π×107×250000×0.00502650.628=0.0015790.6280.002514 H=2.514 mHL = \frac{(4\pi \times 10^{-7}) (500)^2 (0.0050265)}{0.628} = \frac{4\pi \times 10^{-7} \times 250000 \times 0.0050265}{0.628} = \frac{0.001579}{0.628} \approx 0.002514 \text{ H} = 2.514 \text{ mH}
b. Calculate the resistance of the wire.
First, find the length of the wire lwl_w used to wind the solenoid:
lw=N×2πr=500×2π(0.04)=500×0.2513=125.66 ml_w = N \times 2\pi r = 500 \times 2\pi (0.04) = 500 \times 0.2513 = 125.66 \text{ m}
The resistance RR of the wire is given by:
R=ρlwAwR = \frac{\rho l_w}{A_w}, where AwA_w is the cross-sectional area of the wire.
Aw=π(dw/2)2=π(1.256×103/2)2=π(0.628×103)2=π(3.94384×107)1.2397×106 m2A_w = \pi (d_w/2)^2 = \pi (1.256 \times 10^{-3}/2)^2 = \pi (0.628 \times 10^{-3})^2 = \pi (3.94384 \times 10^{-7}) \approx 1.2397 \times 10^{-6} \text{ m}^2
R=(1.6×108)(125.66)1.2397×106=2.01056×1061.2397×1061.6218ΩR = \frac{(1.6 \times 10^{-8})(125.66)}{1.2397 \times 10^{-6}} = \frac{2.01056 \times 10^{-6}}{1.2397 \times 10^{-6}} \approx 1.6218 \Omega
c. Calculate the time constant of the RL circuit.
The time constant τ\tau of an RL circuit is given by:
τ=LR=0.0025141.62180.00155 s=1.55 ms\tau = \frac{L}{R} = \frac{0.002514}{1.6218} \approx 0.00155 \text{ s} = 1.55 \text{ ms}
d. Calculate the magnetic field inside the solenoid.
The magnetic field BB inside a solenoid is given by:
B=μ0NlIB = \mu_0 \frac{N}{l} I
First, find the current II using Ohm's law: V=IRV = IR, so I=VR=3.21.62181.973 AI = \frac{V}{R} = \frac{3.2}{1.6218} \approx 1.973 \text{ A}
B=(4π×107)5000.628(1.973)=(4π×107)(796.178)(1.973)1.968×103 T=1.968 mTB = (4\pi \times 10^{-7}) \frac{500}{0.628} (1.973) = (4\pi \times 10^{-7}) (796.178) (1.973) \approx 1.968 \times 10^{-3} \text{ T} = 1.968 \text{ mT}
e. Calculate the magnetic energy stored in the solenoid.
The magnetic energy UU stored in an inductor is given by:
U=12LI2=12(0.002514)(1.973)2=12(0.002514)(3.892729)0.00489 J=4.89 mJU = \frac{1}{2} LI^2 = \frac{1}{2} (0.002514) (1.973)^2 = \frac{1}{2} (0.002514) (3.892729) \approx 0.00489 \text{ J} = 4.89 \text{ mJ}

3. Final Answer

a. Inductance: L=2.514 mHL = 2.514 \text{ mH}
b. Resistance: R=1.6218ΩR = 1.6218 \Omega
c. Time constant: τ=1.55 ms\tau = 1.55 \text{ ms}
d. Magnetic field: B=1.968 mTB = 1.968 \text{ mT}
e. Magnetic energy: U=4.89 mJU = 4.89 \text{ mJ}

Related problems in "Applied Mathematics"

A rectangular parallelepiped-shaped container has a length of 80 cm and a width of 30 cm. 40 identic...

Volume CalculationUnit ConversionRate of ChangeWord Problem
2025/6/3

The problem asks us to establish the opening balance sheet based on the provided information as of J...

AccountingBalance SheetIncome StatementTrial BalanceFinancial Statements
2025/6/2

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor.

ElectronicsResistorsColor CodeUnits ConversionEngineering
2025/6/1

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor, given the standard resist...

ElectronicsResistor Color CodeOhm's Law
2025/6/1

The problem is to determine the reactions at supports A and D for a simply supported beam subjected ...

StaticsStructural MechanicsBeam AnalysisEquilibriumMoment Calculation
2025/6/1

Two people, one on a motorcycle and one on a bicycle, start from two cities that are 450 km apart an...

Word ProblemDistance, Rate, and TimeLinear Equations
2025/5/31

A convex lens has a focal length of 15 cm. As shown in the diagram, the lens is placed on a laborato...

OpticsLens FormulaRay DiagramsMagnification
2025/5/31

The problem asks to find the AC signal output, $V_0$, of the given circuit. The circuit consists of ...

Circuit AnalysisAC SignalsDiodeApproximation
2025/5/30

The problem asks to find the AC signal output $V_0$ of the given circuit. The circuit consists of a ...

Circuit AnalysisElectronicsDiodesAC SignalVoltage DividerOhm's Law
2025/5/29

The problem asks us to find the AC signal output, $V_o$, of the given circuit. The circuit consists ...

Circuit AnalysisDiode CircuitsAC SignalsClipping CircuitsSignal Processing
2025/5/29