Find the area enclosed by the parabola $y = -x^2 - 4x$ and the x-axis.

CalculusIntegrationArea under a curveParabola
2025/5/17

1. Problem Description

Find the area enclosed by the parabola y=x24xy = -x^2 - 4x and the x-axis.

2. Solution Steps

First, find the points where the parabola intersects the x-axis. These points are where y=0y = 0.
x24x=0-x^2 - 4x = 0
x(x+4)=0-x(x + 4) = 0
x=0x = 0 or x=4x = -4
So the parabola intersects the x-axis at x=0x = 0 and x=4x = -4.
Next, we need to integrate the function y=x24xy = -x^2 - 4x between these two points to find the area. Since the parabola is below the x-axis in the interval [4,0][-4, 0], we take the absolute value of the definite integral or integrate y-y instead.
The integral is:
40(x24x)dx\int_{-4}^{0} (-x^2 - 4x) dx
=40(x2)dx+40(4x)dx= \int_{-4}^{0} (-x^2) dx + \int_{-4}^{0} (-4x) dx
=[x33]40+[2x2]40= [-\frac{x^3}{3}]_{-4}^{0} + [-2x^2]_{-4}^{0}
=(033((4)33))+(2(0)2(2(4)2))= (-\frac{0^3}{3} - (-\frac{(-4)^3}{3})) + (-2(0)^2 - (-2(-4)^2))
=(0643)+(0(32))= (0 - \frac{64}{3}) + (0 - (-32))
=643+32= -\frac{64}{3} + 32
=643+963= -\frac{64}{3} + \frac{96}{3}
=323= \frac{32}{3}
Since the region is below the x-axis, we need to take the absolute value, or we can directly calculate 40(y)dx=40(x2+4x)dx=[x33+2x2]40=(0)((4)33+2(4)2)=(643+32)=64332=64963=323\int_{-4}^0 (-y) dx = \int_{-4}^0 (x^2 + 4x) dx = [\frac{x^3}{3} + 2x^2]_{-4}^0 = (0) - (\frac{(-4)^3}{3} + 2(-4)^2) = -(\frac{-64}{3} + 32) = \frac{64}{3} - 32 = \frac{64 - 96}{3} = -\frac{32}{3}. Taking the absolute value yields 323\frac{32}{3}.
Alternatively, we can integrate (x24x)=x2+4x-( -x^2 - 4x ) = x^2 + 4x from 4-4 to 00.
40(x2+4x)dx=[x33+2x2]40\int_{-4}^{0} (x^2 + 4x) dx = [\frac{x^3}{3} + 2x^2]_{-4}^0
=(033+2(0)2)((4)33+2(4)2)= (\frac{0^3}{3} + 2(0)^2) - (\frac{(-4)^3}{3} + 2(-4)^2)
=0(643+32)= 0 - (\frac{-64}{3} + 32)
=(64+963)= -(\frac{-64+96}{3})
=323= -\frac{32}{3}
The area is the absolute value of the integral, so the area is 323\frac{32}{3}.

3. Final Answer

The area is 323\frac{32}{3}.