a) Finding BC:
Since ∠ A C B = 145 ∘ \angle ACB = 145^{\circ} ∠ A CB = 14 5 ∘ , we can find ∠ B C A \angle BCA ∠ BC A which is the angle inside the triangle. ∠ B C A = 180 ∘ − 145 ∘ = 35 ∘ \angle BCA = 180^{\circ} - 145^{\circ} = 35^{\circ} ∠ BC A = 18 0 ∘ − 14 5 ∘ = 3 5 ∘
In right triangle ABC, we have:
cos ( ∠ B C A ) = B C A C \cos(\angle BCA) = \frac{BC}{AC} cos ( ∠ BC A ) = A C BC Therefore, B C = A C ⋅ cos ( 35 ∘ ) BC = AC \cdot \cos(35^{\circ}) BC = A C ⋅ cos ( 3 5 ∘ ) We are given that cos ( P R S ) = − 5 13 \cos(PRS) = -\frac{5}{13} cos ( PRS ) = − 13 5 and that can also be written as cos ( 180 − P R S ) = 5 13 \cos(180-PRS) = \frac{5}{13} cos ( 180 − PRS ) = 13 5 . Since ∠ A C B = 35 ∘ \angle ACB = 35^{\circ} ∠ A CB = 3 5 ∘ is within the range where cos is positive, it should be cos ( 35 ∘ ) \cos(35^{\circ}) cos ( 3 5 ∘ ) . However, we are not given the exact value of cos ( 35 ∘ ) \cos(35^{\circ}) cos ( 3 5 ∘ ) . The angle ∠ B A C \angle BAC ∠ B A C is close to 45 ∘ 45^{\circ} 4 5 ∘ so assume that the angle is actually 45 ∘ 45^{\circ} 4 5 ∘ Then ∠ B C A = 180 ∘ − 90 ∘ − 45 ∘ = 45 ∘ \angle BCA = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ} ∠ BC A = 18 0 ∘ − 9 0 ∘ − 4 5 ∘ = 4 5 ∘ . If that is the case, then ∠ A C B = 180 ∘ − 145 ∘ = 35 ∘ \angle ACB = 180^{\circ} - 145^{\circ} = 35^{\circ} ∠ A CB = 18 0 ∘ − 14 5 ∘ = 3 5 ∘ . So we need to approximate.
In right-angled triangle ABC, where ∠ B = 90 ∘ \angle B = 90^\circ ∠ B = 9 0 ∘ and ∠ A C B = 35 ∘ \angle ACB = 35^{\circ} ∠ A CB = 3 5 ∘ and hypotenuse A C = 12 AC = 12 A C = 12 . cos ( 35 ∘ ) ≈ cos ( 45 ∘ ) = 2 2 \cos(35^{\circ}) \approx \cos(45^{\circ}) = \frac{\sqrt{2}}{2} cos ( 3 5 ∘ ) ≈ cos ( 4 5 ∘ ) = 2 2 (Approximation) Thus B C = 12 cos ( 35 ∘ ) ≈ 12 ⋅ 2 2 = 6 2 BC = 12 \cos(35^{\circ}) \approx 12 \cdot \frac{\sqrt{2}}{2} = 6\sqrt{2} BC = 12 cos ( 3 5 ∘ ) ≈ 12 ⋅ 2 2 = 6 2
However, note that we can also use cos ( 145 ∘ ) = − 5 13 \cos (145^{\circ}) = -\frac{5}{13} cos ( 14 5 ∘ ) = − 13 5 . We are trying to find the adjacent side to the angle A C B = 35 ∘ ACB=35^{\circ} A CB = 3 5 ∘ in relation to the hypotenuse A C = 12 AC=12 A C = 12 . Thus, cos 35 = B C 12 \cos 35 = \frac{BC}{12} cos 35 = 12 BC . We are also given that cos 145 = − 5 13 \cos 145=-\frac{5}{13} cos 145 = − 13 5 . Therefore cos 35 = − cos 145 = − ( − 5 13 ) = 5 13 \cos 35= - \cos 145 = -(-\frac{5}{13}) = \frac{5}{13} cos 35 = − cos 145 = − ( − 13 5 ) = 13 5 . Hence B C 12 = 5 13 \frac{BC}{12} = \frac{5}{13} 12 BC = 13 5 . Therefore B C = 5 13 ∗ 12 = 60 13 BC=\frac{5}{13}*12 = \frac{60}{13} BC = 13 5 ∗ 12 = 13 60 .
b) Finding sin ( ∠ A C D ) \sin(\angle ACD) sin ( ∠ A C D ) : Since ∠ A C B = 35 ∘ \angle ACB = 35^{\circ} ∠ A CB = 3 5 ∘ , ∠ A C D = 145 ∘ \angle ACD = 145^{\circ} ∠ A C D = 14 5 ∘ . We need to find sin ( 145 ∘ ) \sin(145^{\circ}) sin ( 14 5 ∘ ) . sin ( 145 ∘ ) = sin ( 180 ∘ − 35 ∘ ) = sin ( 35 ∘ ) \sin(145^{\circ}) = \sin(180^{\circ} - 35^{\circ}) = \sin(35^{\circ}) sin ( 14 5 ∘ ) = sin ( 18 0 ∘ − 3 5 ∘ ) = sin ( 3 5 ∘ ) . We are given that cos ( 35 ∘ ) = 5 13 \cos(35^{\circ}) = \frac{5}{13} cos ( 3 5 ∘ ) = 13 5 . We know that sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^2(\theta) + \cos^2(\theta) = 1 sin 2 ( θ ) + cos 2 ( θ ) = 1 . So, sin 2 ( 35 ∘ ) + ( 5 13 ) 2 = 1 \sin^2(35^{\circ}) + (\frac{5}{13})^2 = 1 sin 2 ( 3 5 ∘ ) + ( 13 5 ) 2 = 1 sin 2 ( 35 ∘ ) = 1 − 25 169 = 169 − 25 169 = 144 169 \sin^2(35^{\circ}) = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} sin 2 ( 3 5 ∘ ) = 1 − 169 25 = 169 169 − 25 = 169 144 sin ( 35 ∘ ) = 144 169 = 12 13 \sin(35^{\circ}) = \sqrt{\frac{144}{169}} = \frac{12}{13} sin ( 3 5 ∘ ) = 169 144 = 13 12
c) Finding tan ( ∠ A C D ) \tan(\angle ACD) tan ( ∠ A C D ) : tan ( ∠ A C D ) = tan ( 145 ∘ ) = sin ( 145 ∘ ) cos ( 145 ∘ ) = sin ( 35 ∘ ) cos ( 145 ∘ ) \tan(\angle ACD) = \tan(145^{\circ}) = \frac{\sin(145^{\circ})}{\cos(145^{\circ})} = \frac{\sin(35^{\circ})}{\cos(145^{\circ})} tan ( ∠ A C D ) = tan ( 14 5 ∘ ) = c o s ( 14 5 ∘ ) s i n ( 14 5 ∘ ) = c o s ( 14 5 ∘ ) s i n ( 3 5 ∘ ) We know sin ( 35 ∘ ) = 12 13 \sin(35^{\circ}) = \frac{12}{13} sin ( 3 5 ∘ ) = 13 12 and cos ( 145 ∘ ) = − 5 13 \cos(145^{\circ}) = -\frac{5}{13} cos ( 14 5 ∘ ) = − 13 5 . Therefore, tan ( 145 ∘ ) = 12 13 − 5 13 = − 12 5 \tan(145^{\circ}) = \frac{\frac{12}{13}}{-\frac{5}{13}} = -\frac{12}{5} tan ( 14 5 ∘ ) = − 13 5 13 12 = − 5 12