Given a triangle ABC, I is the midpoint of [AC]. $f_m$ is a transformation such that for any point M, it maps to point M' where $\vec{MM'} = \vec{MA} - m\vec{MB} + \vec{MC}$, where $m$ is a real parameter. 1) Determine the nature and characteristic element of $f_2$. 2) Assume $m \ne 2$ and let $G_m$ be the point such that $\vec{G_mA} - m\vec{G_mB} + \vec{G_mC} = \vec{0}$. a) Determine and construct the set described by $G_m$ as $m$ varies. b) Determine the nature and characteristic elements of $f_m$ depending on the values of $m$.

GeometryVectorsTransformationsTranslationsHomothetyChasles' Relation
2025/3/23

1. Problem Description

Given a triangle ABC, I is the midpoint of [AC]. fmf_m is a transformation such that for any point M, it maps to point M' where MM=MAmMB+MC\vec{MM'} = \vec{MA} - m\vec{MB} + \vec{MC}, where mm is a real parameter.
1) Determine the nature and characteristic element of f2f_2.
2) Assume m2m \ne 2 and let GmG_m be the point such that GmAmGmB+GmC=0\vec{G_mA} - m\vec{G_mB} + \vec{G_mC} = \vec{0}.
a) Determine and construct the set described by GmG_m as mm varies.
b) Determine the nature and characteristic elements of fmf_m depending on the values of mm.

2. Solution Steps

1) Determine the nature and characteristic element of f2f_2.
When m=2m=2, we have MM=MA2MB+MC\vec{MM'} = \vec{MA} - 2\vec{MB} + \vec{MC}.
Let's rewrite this using Chasles' relation by inserting B into MA\vec{MA} and MC\vec{MC}:
MM=(MB+BA)2MB+(MB+BC)=MB+BA2MB+MB+BC=BA+BC\vec{MM'} = (\vec{MB} + \vec{BA}) - 2\vec{MB} + (\vec{MB} + \vec{BC}) = \vec{MB} + \vec{BA} - 2\vec{MB} + \vec{MB} + \vec{BC} = \vec{BA} + \vec{BC}.
Since MM=BA+BC=u\vec{MM'} = \vec{BA} + \vec{BC} = \vec{u} (a constant vector), this is a translation by the vector u=BA+BC\vec{u} = \vec{BA} + \vec{BC}.
2) a) Determine and construct the set described by GmG_m as mm varies.
We have GmAmGmB+GmC=0\vec{G_mA} - m\vec{G_mB} + \vec{G_mC} = \vec{0}.
Rearrange the equation:
mGmB=GmA+GmCm\vec{G_mB} = \vec{G_mA} + \vec{G_mC}.
Since I is the midpoint of AC, we have IA+IC=0\vec{IA} + \vec{IC} = \vec{0}, or GA+GC=2GI\vec{GA} + \vec{GC} = 2\vec{GI} for any point G.
Therefore, GmA+GmC=2GmI\vec{G_mA} + \vec{G_mC} = 2\vec{G_mI}.
So, mGmB=2GmIm\vec{G_mB} = 2\vec{G_mI}.
GmB=2mGmI\vec{G_mB} = \frac{2}{m}\vec{G_mI}.
Since m2m \ne 2, GmI=m2GmB\vec{G_mI} = \frac{m}{2}\vec{G_mB}.
This means that the points GmG_m, I, and B are collinear.
Also, IGm=GmI=m2GmB=m2BGm\vec{IG_m} = -\vec{G_mI} = -\frac{m}{2}\vec{G_mB} = \frac{m}{2}\vec{BG_m}.
So, GmG_m lies on the line (BI) and its position varies depending on the value of m. Since m2m \ne 2, GmIG_m \ne I. The set of points GmG_m is the line (BI) excluding the point I.
2) b) Determine the nature and characteristic elements of fmf_m depending on the values of mm.
MM=MAmMB+MC\vec{MM'} = \vec{MA} - m\vec{MB} + \vec{MC}.
Rewrite the equation using Chasles' relation with point GmG_m:
MM=(MGm+GmA)m(MGm+GmB)+(MGm+GmC)\vec{MM'} = (\vec{MG_m} + \vec{G_mA}) - m(\vec{MG_m} + \vec{G_mB}) + (\vec{MG_m} + \vec{G_mC})
MM=(1m+1)MGm+GmAmGmB+GmC\vec{MM'} = (1 - m + 1)\vec{MG_m} + \vec{G_mA} - m\vec{G_mB} + \vec{G_mC}
Since GmAmGmB+GmC=0\vec{G_mA} - m\vec{G_mB} + \vec{G_mC} = \vec{0},
MM=(2m)MGm\vec{MM'} = (2 - m)\vec{MG_m}.
If m=2m=2, we already know that f2f_2 is a translation. Now let's consider the cases when m2m \ne 2.
MM=(m2)MGm\vec{M'M} = (m - 2)\vec{MG_m}.
MM=(m2)MGm    MGm+GmM=(m2)MGm\vec{M'M} = (m-2)\vec{MG_m} \implies \vec{M'G_m} + \vec{G_mM} = (m-2)\vec{MG_m}.
MGm=(m2)MGmGmM=(m2)MGm+MM\vec{M'G_m} = (m-2)\vec{MG_m} - \vec{G_mM} = (m-2)\vec{MG_m} + \vec{MM}.
MGm=(m2)MGm+MGm+GmM=(m1)MGm\vec{M'G_m} = (m-2)\vec{MG_m} + \vec{MG_m} + \vec{G_mM} = (m-1)\vec{MG_m}.
Therefore, GmM=(1m)GmM\vec{G_mM'} = (1-m)\vec{G_mM}.
This indicates that GmG_m is a fixed point. fmf_m is a homothety with center GmG_m and ratio 1m1-m.

3. Final Answer

1) f2f_2 is a translation by the vector BA+BC\vec{BA} + \vec{BC}.
2) a) The set described by GmG_m is the line (BI) excluding the point I.
2) b) If m=2m=2, fmf_m is a translation by the vector BA+BC\vec{BA} + \vec{BC}. If m2m \ne 2, fmf_m is a homothety with center GmG_m and ratio 1m1-m.

Related problems in "Geometry"

We are given a diagram with parallel lines cut by a transversal. We need to find the values of $x$, ...

Parallel LinesTransversalsAnglesSupplementary AnglesAlternate Interior AnglesLinear Pair
2025/4/6

The image shows a heptagon (7-sided polygon) with two sides labeled as $40-10x$ and $6x+24$. We are ...

PolygonsHeptagonRegular PolygonAlgebraic EquationsSide Lengths
2025/4/6

We are given a right triangle with leg $a = 45$ yards and hypotenuse $c = 75$ yards. We need to find...

Pythagorean TheoremRight TrianglesGeometryMeasurement
2025/4/6

In a right triangle, $a$ and $b$ are the lengths of the legs, and $c$ is the length of the hypotenus...

Pythagorean TheoremRight TriangleTriangle GeometrySquare RootApproximation
2025/4/6

We are given a right triangle with legs $a$ and $b$, and hypotenuse $c$. We are given that $a = 2.9$...

Pythagorean TheoremRight TrianglesGeometryTriangle PropertiesAlgebra
2025/4/6

In a right triangle, $a$ and $b$ are the lengths of the legs and $c$ is the length of the hypotenuse...

Pythagorean TheoremRight TriangleGeometryMeasurement
2025/4/6

The problem states that we have a right triangle with legs of length $a$ and $b$, and a hypotenuse o...

Pythagorean TheoremRight TriangleTriangle GeometryApproximationMeasurement
2025/4/6

We are given a right triangle with legs of length $a$ and $b$, and a hypotenuse of length $c$. We ar...

Pythagorean TheoremRight TriangleGeometrySquare RootApproximation
2025/4/6

In a right triangle, the lengths of the legs are $a$ and $b$, and the length of the hypotenuse is $c...

Pythagorean TheoremRight TriangleGeometry
2025/4/6

We are given a right triangle with legs $a$ and $b$, and hypotenuse $c$. We are given the values of ...

Pythagorean TheoremRight TrianglesGeometric Calculations
2025/4/6