The problem is based on an equilateral triangle $ABC$ with side length 4cm and center $O$. $\Gamma$ is the circumcircle of $ABC$. $I$ is the midpoint of $[AB]$ and $J$ is the midpoint of $[OI]$. The lines $(OA)$ and $(OC)$ intersect $\Gamma$ at $D$ and $E$ respectively. The problem asks us to find the point $G$ such that $\vec{GA} + \vec{GB} + \vec{GC} + \vec{GD} + \vec{GE} = \vec{0}$. We need to express $\vec{OG}$ in terms of $\vec{OB}$ and then in terms of $\vec{OJ}$ and $\vec{OD}$. We need to show that lines $(OB)$ and $(DJ)$ intersect at $G$. Finally, we are given a transformation $f$ such that $4\vec{MM'} = \vec{MA} + \vec{MB} + \vec{MC} + \vec{MD} + \vec{ME}$ and $M' = f(M)$. We must show that $f$ is a homothety, specifying its center and ratio. We also need to find the images of points $B$ and $D$ under the transformation $f$.

GeometryVectorsEquilateral TriangleCircumcircleHomothetyGeometric Transformations
2025/3/23

1. Problem Description

The problem is based on an equilateral triangle ABCABC with side length 4cm and center OO. Γ\Gamma is the circumcircle of ABCABC. II is the midpoint of [AB][AB] and JJ is the midpoint of [OI][OI]. The lines (OA)(OA) and (OC)(OC) intersect Γ\Gamma at DD and EE respectively.
The problem asks us to find the point GG such that GA+GB+GC+GD+GE=0\vec{GA} + \vec{GB} + \vec{GC} + \vec{GD} + \vec{GE} = \vec{0}. We need to express OG\vec{OG} in terms of OB\vec{OB} and then in terms of OJ\vec{OJ} and OD\vec{OD}. We need to show that lines (OB)(OB) and (DJ)(DJ) intersect at GG.
Finally, we are given a transformation ff such that 4MM=MA+MB+MC+MD+ME4\vec{MM'} = \vec{MA} + \vec{MB} + \vec{MC} + \vec{MD} + \vec{ME} and M=f(M)M' = f(M). We must show that ff is a homothety, specifying its center and ratio. We also need to find the images of points BB and DD under the transformation ff.

2. Solution Steps

2a) Express OG\vec{OG} in function of OB\vec{OB}
Since GA+GB+GC+GD+GE=0\vec{GA} + \vec{GB} + \vec{GC} + \vec{GD} + \vec{GE} = \vec{0}, we have:
OAOG+OBOG+OCOG+ODOG+OEOG=0\vec{OA} - \vec{OG} + \vec{OB} - \vec{OG} + \vec{OC} - \vec{OG} + \vec{OD} - \vec{OG} + \vec{OE} - \vec{OG} = \vec{0}
OA+OB+OC+OD+OE5OG=0\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} - 5\vec{OG} = \vec{0}
5OG=OA+OB+OC+OD+OE5\vec{OG} = \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE}
Since ABCABC is an equilateral triangle centered at OO, and DD and EE are on the circumcircle, OA+OC=OD+OE\vec{OA} + \vec{OC} = \vec{OD} + \vec{OE}.
Then 5OG=OB+2(OA+OC)5\vec{OG} = \vec{OB} + 2(\vec{OA} + \vec{OC})
Since OO is the center of the equilateral triangle ABCABC, OA+OB+OC=0\vec{OA} + \vec{OB} + \vec{OC} = \vec{0}, so OA+OC=OB\vec{OA} + \vec{OC} = -\vec{OB}.
5OG=OB+2(OB)=OB5\vec{OG} = \vec{OB} + 2(-\vec{OB}) = -\vec{OB}
OG=15OB\vec{OG} = -\frac{1}{5}\vec{OB}
2b) Express OG\vec{OG} in function of OJ\vec{OJ} and OD\vec{OD}
We know that JJ is the midpoint of [OI][OI], so OJ=12OI\vec{OJ} = \frac{1}{2}\vec{OI}. Since II is the midpoint of [AB][AB], OI=12(OA+OB)\vec{OI} = \frac{1}{2}(\vec{OA}+\vec{OB}), and OA+OB+OC=0\vec{OA}+\vec{OB}+\vec{OC} = \vec{0} thus OI=12(OC+OB)\vec{OI} = \frac{1}{2}(-\vec{OC} + \vec{OB}). Therefore OJ=14(OC+OB)\vec{OJ} = \frac{1}{4}(-\vec{OC}+\vec{OB}).
From the previous result, we have OB=5OG\vec{OB} = -5\vec{OG}. Also, DD is on (OA)(OA), so OA=kOD\vec{OA} = k\vec{OD} for some constant kk.
Since OA+OC=OB\vec{OA} + \vec{OC} = -\vec{OB}, OC=OBOA=5OGkOD\vec{OC} = -\vec{OB} - \vec{OA} = 5\vec{OG} - k\vec{OD}.
Since OJ=14(OC+OB)=14(5OG+kOD5OG)=14(10OG+kOD)\vec{OJ} = \frac{1}{4}(-\vec{OC}+\vec{OB}) = \frac{1}{4}(-5\vec{OG}+k\vec{OD} - 5\vec{OG}) = \frac{1}{4}(-10\vec{OG}+k\vec{OD})
Then 4OJ=10OG+kOD4\vec{OJ} = -10\vec{OG}+k\vec{OD}, so 10OG=kOD4OJ10\vec{OG} = k\vec{OD}-4\vec{OJ}
OG=k10OD25OJ\vec{OG} = \frac{k}{10}\vec{OD} - \frac{2}{5}\vec{OJ}
Since OA+OB+OC=0\vec{OA} + \vec{OB} + \vec{OC} = 0, OA=OD\vec{OA} = \vec{OD} (since DD is on Γ\Gamma), OB=5OG\vec{OB} = -5 \vec{OG}
5OG=OD+OB+OC+OD+OE=OD5OG+OC+OD+OE5\vec{OG} = \vec{OD} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} = \vec{OD} - 5\vec{OG} + \vec{OC} + \vec{OD} + \vec{OE}.
10OG=2OD+OC+OE5OG10\vec{OG} = 2\vec{OD} + \vec{OC} + \vec{OE} - 5\vec{OG}.
OG=15(OB)\vec{OG} = \frac{1}{5} (-\vec{OB})
2c) Show that (OB)(OB) and (DJ)(DJ) are secant at GG.
OG=15OB\vec{OG} = -\frac{1}{5}\vec{OB}, so O,G,BO, G, B are collinear. We also have OJ=12OI=14(OBOC)\vec{OJ} = \frac{1}{2} \vec{OI} = \frac{1}{4} (\vec{OB} - \vec{OC}).
We also know that OA=OD\vec{OA} = \vec{OD} because OA=ODOA=OD. Let x=15x = \frac{1}{5}. Then OG=xOB\vec{OG} = -x\vec{OB} or OG=xBO\vec{OG} = x\vec{BO}. Thus OG\vec{OG} is on line (OB)(OB).
DJ=OJOD=14(OBOC)OD\vec{DJ} = \vec{OJ} - \vec{OD} = \frac{1}{4}(\vec{OB}-\vec{OC}) - \vec{OD}.
Also, 5OG=OA+OB+OC+OD+OE5\vec{OG} = \vec{OA}+\vec{OB}+\vec{OC}+\vec{OD}+\vec{OE} and OA+OB+OC=0\vec{OA}+\vec{OB}+\vec{OC} = \vec{0}, thus 5OG=OD+OE=OD+OC5\vec{OG} = \vec{OD}+\vec{OE} = \vec{OD}+\vec{OC}. Since OC=OE\vec{OC}=\vec{OE}.
2d)
4MM=MA+MB+MC+MD+ME4\vec{MM'} = \vec{MA} + \vec{MB} + \vec{MC} + \vec{MD} + \vec{ME}
Let M=GM = G, 4GG=GA+GB+GC+GD+GE=04\vec{GG'} = \vec{GA} + \vec{GB} + \vec{GC} + \vec{GD} + \vec{GE} = \vec{0}, thus GG=0\vec{GG'} = \vec{0} and G=GG' = G. Therefore GG is the center of the homothety.
4GM=GA+GB+GC+GD+GE5GM4\vec{GM'} = \vec{GA} + \vec{GB} + \vec{GC} + \vec{GD} + \vec{GE} - 5\vec{GM}
4GM=5MG4\vec{GM'} = - 5\vec{MG}, thus 4GM=5GM4\vec{GM'} = 5\vec{GM}, thus GM=54GM\vec{GM'} = \frac{5}{4}\vec{GM}.
Therefore ff is a homothety with center GG and ratio 5/45/4.
f(B)f(B): 4BB=BA+BB+BC+BD+BE=BA+BC+BD+BE4\vec{BB'} = \vec{BA} + \vec{BB} + \vec{BC} + \vec{BD} + \vec{BE} = \vec{BA} + \vec{BC} + \vec{BD} + \vec{BE}
f(D)f(D): 4DD=DA+DB+DC+DD+DE=DA+DB+DC+DE4\vec{DD'} = \vec{DA} + \vec{DB} + \vec{DC} + \vec{DD} + \vec{DE} = \vec{DA} + \vec{DB} + \vec{DC} + \vec{DE}
Since GG is the center of the homothety, f(B)=Bf(B) = B', such that GB=54GB\vec{GB'} = \frac{5}{4}\vec{GB}. Similarly, for f(D)=Df(D) = D', GD=54GD\vec{GD'} = \frac{5}{4}\vec{GD}.

3. Final Answer

2a) OG=15OB\vec{OG} = -\frac{1}{5}\vec{OB}
2b) OG=k10OD25OJ\vec{OG} = \frac{k}{10}\vec{OD} - \frac{2}{5}\vec{OJ}, where OA=kOD\vec{OA} = k\vec{OD}.
3a) ff is a homothety with center GG and ratio 54\frac{5}{4}.
3b) GB=54GB\vec{GB'} = \frac{5}{4}\vec{GB} and GD=54GD\vec{GD'} = \frac{5}{4}\vec{GD}

Related problems in "Geometry"

The problem states that the area of triangle OFC is $33 \text{ cm}^2$. We need to find the area of t...

AreaTrianglesSimilar TrianglesRatio and Proportion
2025/6/6

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3