Given three non-collinear points $A$, $B$, and $C$. For any point $M$ in the plane, we associate a point $M'$ defined by $3\vec{AM'} - 2\vec{AM} = \vec{BC}$. 1) Explain why each point $M$ corresponds to a unique point $M'$. 2) We define a function $f$ from the plane into itself. Determine the images of $A$, $B$, and $C$ by $f$. 3) Find a point invariant by $f$. 4) Demonstrate that $f$ is a homothety and give its center and ratio.

GeometryVectorsTransformationsHomothetyGeometric Transformations
2025/3/23

1. Problem Description

Given three non-collinear points AA, BB, and CC. For any point MM in the plane, we associate a point MM' defined by 3AM2AM=BC3\vec{AM'} - 2\vec{AM} = \vec{BC}.
1) Explain why each point MM corresponds to a unique point MM'.
2) We define a function ff from the plane into itself. Determine the images of AA, BB, and CC by ff.
3) Find a point invariant by ff.
4) Demonstrate that ff is a homothety and give its center and ratio.

2. Solution Steps

1) We have 3AM2AM=BC3\vec{AM'} - 2\vec{AM} = \vec{BC}. Then
3AM=2AM+BC3\vec{AM'} = 2\vec{AM} + \vec{BC}
AM=23AM+13BC\vec{AM'} = \frac{2}{3}\vec{AM} + \frac{1}{3}\vec{BC}.
Since the right side is uniquely determined by MM, AM\vec{AM'} is uniquely determined. Therefore MM' is unique.
2) We need to find f(A),f(B),f(C)f(A), f(B), f(C). Let A,B,CA', B', C' be the images of A,B,CA, B, C respectively.
For M=AM=A, we have 3AA2AA=BC3\vec{AA'} - 2\vec{AA} = \vec{BC}, which means 3AA=BC3\vec{AA'} = \vec{BC}, so AA=13BC\vec{AA'} = \frac{1}{3}\vec{BC}. Thus, A=A+13BCA' = A + \frac{1}{3}\vec{BC}.
For M=BM=B, we have 3AB2AB=BC3\vec{AB'} - 2\vec{AB} = \vec{BC}, which means 3AB=2AB+BC3\vec{AB'} = 2\vec{AB} + \vec{BC}. Thus, AB=23AB+13BC\vec{AB'} = \frac{2}{3}\vec{AB} + \frac{1}{3}\vec{BC}.
For M=CM=C, we have 3AC2AC=BC3\vec{AC'} - 2\vec{AC} = \vec{BC}, which means 3AC=2AC+BC3\vec{AC'} = 2\vec{AC} + \vec{BC}. Thus, AC=23AC+13BC\vec{AC'} = \frac{2}{3}\vec{AC} + \frac{1}{3}\vec{BC}.
3) We are looking for a point II such that f(I)=If(I) = I, i.e., 3AI2AI=BC3\vec{AI} - 2\vec{AI} = \vec{BC}, so AI=BC\vec{AI} = \vec{BC}. Then I=A+BCI = A + \vec{BC}.
4) We have AM=23AM+13BC\vec{AM'} = \frac{2}{3}\vec{AM} + \frac{1}{3}\vec{BC}. Also, AI=BC\vec{AI} = \vec{BC}.
Then AM=23AM+13AI\vec{AM'} = \frac{2}{3}\vec{AM} + \frac{1}{3}\vec{AI}.
Subtracting AI\vec{AI} from both sides,
AMAI=23AM+13AIAI=23AM23AI\vec{AM'} - \vec{AI} = \frac{2}{3}\vec{AM} + \frac{1}{3}\vec{AI} - \vec{AI} = \frac{2}{3}\vec{AM} - \frac{2}{3}\vec{AI}
IM=23(AMAI)=23IM\vec{IM'} = \frac{2}{3}(\vec{AM} - \vec{AI}) = \frac{2}{3}\vec{IM}.
Therefore, ff is a homothety with center II and ratio 23\frac{2}{3}.
The center is I=A+BCI = A + \vec{BC}, such that AI=BC\vec{AI} = \vec{BC}.

3. Final Answer

1) Each point MM corresponds to a unique point MM' because AM=23AM+13BC\vec{AM'} = \frac{2}{3}\vec{AM} + \frac{1}{3}\vec{BC} is uniquely determined by MM.
2) f(A)=A+13BCf(A) = A + \frac{1}{3}\vec{BC}, AB=23AB+13BC\vec{AB'} = \frac{2}{3}\vec{AB} + \frac{1}{3}\vec{BC}, AC=23AC+13BC\vec{AC'} = \frac{2}{3}\vec{AC} + \frac{1}{3}\vec{BC}.
3) I=A+BCI = A + \vec{BC}.
4) ff is a homothety with center I=A+BCI = A + \vec{BC} and ratio 23\frac{2}{3}.

Related problems in "Geometry"

The problem requires us to find the perimeter of the given polygon. The polygon has five sides with ...

PerimeterPolygon
2025/4/6

The problem asks to find the perimeter of a rectangle with length 28 ft and width 13 ft.

PerimeterRectangleGeometric Formulas
2025/4/6

We are given that ray $VX$ bisects angle $WVY$ and ray $VY$ bisects angle $XVZ$. We need to prove th...

Angle BisectorGeometric ProofCongruenceTransitive Property
2025/4/5

ABCD is a parallelogram. I and J are the midpoints of segments [AB] and [CD] respectively. 1) Prove ...

ParallelogramVectorsMidpointCollinearityGeometric Proof
2025/4/5

The problem is about geometric properties of a triangle ABC. 1) a) Construct points $M$ and $N$ such...

VectorsTriangle GeometryParallel LinesCollinearity
2025/4/5

Given a triangle $ABC$, $M$ is the midpoint of $[AB]$ and $N$ is the midpoint of $[MC]$. 1) a) Place...

VectorsCollinearityTriangle Geometry
2025/4/5

Given a triangle ABC, we are asked to solve three problems related to a point M in the plane. 1) Pro...

VectorsGeometric ProofParallelogramCollinearityPerpendicular BisectorCircle
2025/4/5

The problem requires completing a geometric proof given the following: $\overline{PQ} \cong \overlin...

Geometric ProofCongruenceSegment Addition PostulateProofs
2025/4/5

The Pentagon building has five congruent sides. We are given that one side is $921$ feet long. We ne...

PerimeterPentagonGeometric Shapes
2025/4/5

The problem asks to find several vector projections given the vectors $u = i + 2j$, $v = 2i - j$, an...

Vector ProjectionVectorsLinear Algebra
2025/4/5