Solve the equation $\frac{(x^2+a^2-b^2)(a+x)}{ax} + \frac{(a^2+b^2-x^2)(b+a)}{ab} + \frac{(b^2+x^2-a^2)(x+b)}{bx} = 0$.

AlgebraEquationsAlgebraic ManipulationQuadratic FormulaPolynomial Equations
2025/5/24

1. Problem Description

Solve the equation (x2+a2b2)(a+x)ax+(a2+b2x2)(b+a)ab+(b2+x2a2)(x+b)bx=0\frac{(x^2+a^2-b^2)(a+x)}{ax} + \frac{(a^2+b^2-x^2)(b+a)}{ab} + \frac{(b^2+x^2-a^2)(x+b)}{bx} = 0.

2. Solution Steps

First, multiply the entire equation by abxabx to eliminate the denominators:
b(x2+a2b2)(a+x)+x(a2+b2x2)(b+a)+a(b2+x2a2)(x+b)=0b(x^2+a^2-b^2)(a+x) + x(a^2+b^2-x^2)(b+a) + a(b^2+x^2-a^2)(x+b) = 0
Expanding each term:
b(ax2+x3+a3+a2xab2b2x)+x(a2b+a3+b3+ab2bx2ax2)+a(b2x+bx2+x3+bx2a2xa2b)=0b(ax^2+x^3+a^3+a^2x-ab^2-b^2x) + x(a^2b+a^3+b^3+ab^2-bx^2-ax^2) + a(b^2x+bx^2+x^3+bx^2-a^2x-a^2b) = 0
abx2+bx3+a3b+a2bxab3b3x+a2bx+a3x+b3x+ab2xbx3ax3+ab2x+abx2+ax3+abx2a3xa3b=0abx^2+bx^3+a^3b+a^2bx-ab^3-b^3x + a^2bx+a^3x+b^3x+ab^2x-bx^3-ax^3 + ab^2x+abx^2+ax^3+abx^2-a^3x-a^3b = 0
Combining like terms:
(bx3bx3)+(ax3+ax3)+(abx2+abx2+abx2)+(a3ba3b)+(a2bx+a2bx+ab2x+ab2x)+(ab3)+(b3x+b3x)+(a3xa3x)=0(bx^3-bx^3) + (-ax^3+ax^3) + (abx^2+abx^2+abx^2) + (a^3b-a^3b) + (a^2bx+a^2bx+ab^2x+ab^2x) + (-ab^3) + (-b^3x+b^3x) + (a^3x-a^3x)=0
3abx2+2a2bx+2ab2xab3=03abx^2 + 2a^2bx + 2ab^2x -ab^3 = 0
3abx2+2ab(a+b)xab3=03abx^2 + 2ab(a+b)x - ab^3 = 0
Divide by abab:
3x2+2(a+b)xb2=03x^2 + 2(a+b)x - b^2 = 0
Using the quadratic formula to solve for xx:
x=2(a+b)±(2(a+b))24(3)(b2)2(3)x = \frac{-2(a+b) \pm \sqrt{(2(a+b))^2 - 4(3)(-b^2)}}{2(3)}
x=2(a+b)±4(a2+2ab+b2)+12b26x = \frac{-2(a+b) \pm \sqrt{4(a^2+2ab+b^2) + 12b^2}}{6}
x=2(a+b)±4a2+8ab+4b2+12b26x = \frac{-2(a+b) \pm \sqrt{4a^2+8ab+4b^2 + 12b^2}}{6}
x=2(a+b)±4a2+8ab+16b26x = \frac{-2(a+b) \pm \sqrt{4a^2+8ab+16b^2}}{6}
x=2(a+b)±4(a2+2ab+4b2)6x = \frac{-2(a+b) \pm \sqrt{4(a^2+2ab+4b^2)}}{6}
x=2(a+b)±2a2+2ab+4b26x = \frac{-2(a+b) \pm 2\sqrt{a^2+2ab+4b^2}}{6}
x=(a+b)±a2+2ab+4b23x = \frac{-(a+b) \pm \sqrt{a^2+2ab+4b^2}}{3}

3. Final Answer

x=(a+b)±a2+2ab+4b23x = \frac{-(a+b) \pm \sqrt{a^2+2ab+4b^2}}{3}

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12