We need to solve the equation $\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{a^2 - b^2}$ for $x$ in terms of $a$ and $b$.

AlgebraEquation SolvingLinear EquationsFractional EquationsVariable Isolation
2025/5/24

1. Problem Description

We need to solve the equation axbaa+xa+b=2axa2b2\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{a^2 - b^2} for xx in terms of aa and bb.

2. Solution Steps

First, we can rewrite the equation as:
axbaa+xa+b=2axa2b2\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{a^2 - b^2}
Note that a2b2=(ab)(a+b)a^2 - b^2 = (a-b)(a+b). Also, ba=(ab)b-a = -(a-b).
Then, we have:
ax(ab)a+xa+b=2ax(ab)(a+b)\frac{a-x}{-(a-b)} - \frac{a+x}{a+b} = \frac{2ax}{(a-b)(a+b)}
Multiply both sides by (ab)(a+b)-(a-b)(a+b):
(ax)(a+b)+(a+x)(ab)=2ax(a-x)(a+b) + (a+x)(a-b) = -2ax
Expanding the terms, we have:
a2+abaxbx+a2ab+axbx=2axa^2 + ab - ax - bx + a^2 - ab + ax - bx = -2ax
Simplifying the terms, we have:
2a22bx=2ax2a^2 - 2bx = -2ax
2a2=2bx2ax2a^2 = 2bx - 2ax
2a2=2x(ba)2a^2 = 2x(b-a)
a2=x(ba)a^2 = x(b-a)
If ba0b-a \neq 0, then we can divide by bab-a to solve for xx:
x=a2bax = \frac{a^2}{b-a}
If ba=0b-a = 0, then b=ab=a. In that case, the original equation is undefined.

3. Final Answer

x=a2bax = \frac{a^2}{b-a} if bab \neq a.
If b=ab=a, the original equation is undefined.

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12