The problem asks to solve the given equations for the unknown variable $x$ and discuss the solution based on the parameters $a, b, c, m, n$. We will solve the first two equations. 1) $a(ax+1) = 2(2x-1)$ 2) $\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{a^2-b^2}$

AlgebraEquationsLinear EquationsQuadratic EquationsVariable SolvingParameter AnalysisSolution DiscussionAlgebraic Manipulation
2025/5/24

1. Problem Description

The problem asks to solve the given equations for the unknown variable xx and discuss the solution based on the parameters a,b,c,m,na, b, c, m, n. We will solve the first two equations.
1) a(ax+1)=2(2x1)a(ax+1) = 2(2x-1)
2) axbaa+xa+b=2axa2b2\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{a^2-b^2}

2. Solution Steps

1) a(ax+1)=2(2x1)a(ax+1) = 2(2x-1)
a2x+a=4x2a^2x + a = 4x - 2
a2x4x=a2a^2x - 4x = -a - 2
x(a24)=(a+2)x(a^2-4) = -(a+2)
x(a2)(a+2)=(a+2)x(a-2)(a+2) = -(a+2)
If a2a \neq 2 and a2a \neq -2, then
x=(a+2)(a2)(a+2)=1a2=12ax = \frac{-(a+2)}{(a-2)(a+2)} = \frac{-1}{a-2} = \frac{1}{2-a}
If a=2a = -2, then
x(44)=(2+2)x(4-4) = -(-2+2)
0=00 = 0
So xx can be any real number.
If a=2a = 2, then
x(44)=(2+2)x(4-4) = -(2+2)
0=40 = -4
This is not possible, so there is no solution.
2) axbaa+xa+b=2axa2b2\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{a^2-b^2}
axbaa+xa+b=2ax(ab)(a+b)\frac{a-x}{b-a} - \frac{a+x}{a+b} = \frac{2ax}{(a-b)(a+b)}
Multiply both sides by (ba)(a+b)(b-a)(a+b):
(ax)(a+b)(a+x)(ba)=2ax(ba)(a+b)(ab)(a+b)=2ax(ba)(ab)=2ax(a-x)(a+b) - (a+x)(b-a) = \frac{2ax(b-a)(a+b)}{(a-b)(a+b)} = \frac{2ax(b-a)}{(a-b)} = -2ax
a2+abaxbx(aba2+bxax)=2axa^2+ab-ax-bx - (ab -a^2 + bx - ax) = -2ax
a2+abaxbxab+a2bx+ax=2axa^2+ab-ax-bx - ab + a^2 - bx + ax = -2ax
2a22bx=2ax2a^2 - 2bx = -2ax
2a2=2bx2ax2a^2 = 2bx - 2ax
a2=bxaxa^2 = bx - ax
a2=x(ba)a^2 = x(b-a)
If bab \neq a, then
x=a2bax = \frac{a^2}{b-a}
If b=ab = a, then
a2=x(aa)a^2 = x(a-a)
a2=0a^2 = 0
a=0a=0
If a=0a=0 and b=0b=0, any xx is a solution as the original equation reduces to x0x0=0\frac{-x}{0} - \frac{x}{0} = 0. However, since division by zero is undefined, there is no solution.

3. Final Answer

1) If a2a \neq 2 and a2a \neq -2, x=12ax = \frac{1}{2-a}.
If a=2a = -2, xx can be any real number.
If a=2a = 2, there is no solution.
2) If bab \neq a, x=a2bax = \frac{a^2}{b-a}.
If b=ab = a, then the equation is undefined, and there is no solution.

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12