Solve for $x$ in the equation: $\frac{x-a}{bc} + \frac{x-b}{ac} + \frac{x-c}{ab} = 2(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$

AlgebraEquationsAlgebraic ManipulationVariablesSolving Equations
2025/5/24

1. Problem Description

Solve for xx in the equation:
xabc+xbac+xcab=2(1a+1b+1c)\frac{x-a}{bc} + \frac{x-b}{ac} + \frac{x-c}{ab} = 2(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})

2. Solution Steps

Multiply both sides of the equation by abcabc:
abc(xabc+xbac+xcab)=abc(2(1a+1b+1c))abc (\frac{x-a}{bc} + \frac{x-b}{ac} + \frac{x-c}{ab}) = abc (2(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}))
Distribute abcabc to each term on both sides:
a(xa)+b(xb)+c(xc)=2bc+2ac+2aba(x-a) + b(x-b) + c(x-c) = 2bc + 2ac + 2ab
Expand the terms:
axa2+bxb2+cxc2=2bc+2ac+2abax - a^2 + bx - b^2 + cx - c^2 = 2bc + 2ac + 2ab
Combine terms with xx:
x(a+b+c)(a2+b2+c2)=2bc+2ac+2abx(a+b+c) - (a^2 + b^2 + c^2) = 2bc + 2ac + 2ab
Isolate the term with xx:
x(a+b+c)=a2+b2+c2+2bc+2ac+2abx(a+b+c) = a^2 + b^2 + c^2 + 2bc + 2ac + 2ab
Recognize the right side as a perfect square:
x(a+b+c)=(a+b+c)2x(a+b+c) = (a+b+c)^2
Divide both sides by (a+b+c)(a+b+c), assuming a+b+c0a+b+c \neq 0:
x=(a+b+c)2a+b+cx = \frac{(a+b+c)^2}{a+b+c}
x=a+b+cx = a+b+c

3. Final Answer

x=a+b+cx = a+b+c

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12