We have the following system of equations:
Adding the three equations, we get:
(x+y)+(y+z)+(z+x)=a+b+c 2x+2y+2z=a+b+c 2(x+y+z)=a+b+c x+y+z=2a+b+c (4) From equation (4) and (1), we can find z: x+y+z=2a+b+c a+z=2a+b+c z=2a+b+c−a=2a+b+c−2a=2b+c−a From equation (4) and (2), we can find x: x+y+z=2a+b+c x+b=2a+b+c x=2a+b+c−b=2a+b+c−2b=2a+c−b From equation (4) and (3), we can find y: x+y+z=2a+b+c c+y=2a+b+c y=2a+b+c−c=2a+b+c−2c=2a+b−c