We need to perform polynomial long division for three problems: a) $(x^3 - 2x + 1) \div (x - 4)$ b) $(x^3 + 2x^2 - 6x + 1) \div (x + 2)$ c) $(2x^3 + 5x^2 - 4x - 5) \div (2x + 1)$

AlgebraPolynomial Long DivisionPolynomials
2025/3/24

1. Problem Description

We need to perform polynomial long division for three problems:
a) (x32x+1)÷(x4)(x^3 - 2x + 1) \div (x - 4)
b) (x3+2x26x+1)÷(x+2)(x^3 + 2x^2 - 6x + 1) \div (x + 2)
c) (2x3+5x24x5)÷(2x+1)(2x^3 + 5x^2 - 4x - 5) \div (2x + 1)

2. Solution Steps

a) (x32x+1)÷(x4)(x^3 - 2x + 1) \div (x - 4)
First, rewrite the dividend with missing terms: x3+0x22x+1x^3 + 0x^2 - 2x + 1.
Now perform long division:
```
x^2 + 4x + 14
x - 4 | x^3 + 0x^2 - 2x + 1
-(x^3 - 4x^2)
----------------
4x^2 - 2x
-(4x^2 - 16x)
----------------
14x + 1
-(14x - 56)
----------------
57
```
Therefore, (x32x+1)÷(x4)=x2+4x+14+57x4(x^3 - 2x + 1) \div (x - 4) = x^2 + 4x + 14 + \frac{57}{x-4}
b) (x3+2x26x+1)÷(x+2)(x^3 + 2x^2 - 6x + 1) \div (x + 2)
Now perform long division:
```
x^2 - 6
x + 2 | x^3 + 2x^2 - 6x + 1
-(x^3 + 2x^2)
----------------
0x^2 - 6x
-(-6x - 12)
----------------
13
```
Therefore, (x3+2x26x+1)÷(x+2)=x26+13x+2(x^3 + 2x^2 - 6x + 1) \div (x + 2) = x^2 - 6 + \frac{13}{x+2}
c) (2x3+5x24x5)÷(2x+1)(2x^3 + 5x^2 - 4x - 5) \div (2x + 1)
Now perform long division:
```
x^2 + 2x - 3
2x + 1 | 2x^3 + 5x^2 - 4x - 5
-(2x^3 + x^2)
----------------
4x^2 - 4x
-(4x^2 + 2x)
----------------
-6x - 5
-(-6x - 3)
----------------
-2
```
Therefore, (2x3+5x24x5)÷(2x+1)=x2+2x322x+1(2x^3 + 5x^2 - 4x - 5) \div (2x + 1) = x^2 + 2x - 3 - \frac{2}{2x+1}

3. Final Answer

a) x2+4x+14+57x4x^2 + 4x + 14 + \frac{57}{x-4}
b) x26+13x+2x^2 - 6 + \frac{13}{x+2}
c) x2+2x322x+1x^2 + 2x - 3 - \frac{2}{2x+1}

Related problems in "Algebra"