The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the given curves and with the indicated density for problem number 3. The given curves are $y = 0$, $y = \sin x$, and $0 \le x \le \pi$. The density function is $\delta(x, y) = y$.

Applied MathematicsCalculusMultiple IntegralsCenter of MassDensity Function
2025/5/25

1. Problem Description

The problem asks us to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the given curves and with the indicated density for problem number

3. The given curves are $y = 0$, $y = \sin x$, and $0 \le x \le \pi$. The density function is $\delta(x, y) = y$.

2. Solution Steps

First, we need to find the mass mm. The formula for mass is:
m=Rδ(x,y)dAm = \iint_R \delta(x, y) \, dA
In this case, RR is defined by 0xπ0 \le x \le \pi and 0ysinx0 \le y \le \sin x, and δ(x,y)=y\delta(x, y) = y. Therefore,
m=0π0sinxydydxm = \int_{0}^{\pi} \int_{0}^{\sin x} y \, dy \, dx
m=0π[12y2]0sinxdxm = \int_{0}^{\pi} \left[ \frac{1}{2} y^2 \right]_{0}^{\sin x} dx
m=0π12sin2xdxm = \int_{0}^{\pi} \frac{1}{2} \sin^2 x \, dx
Using the identity sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2},
m=120π1cos(2x)2dxm = \frac{1}{2} \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} \, dx
m=140π(1cos(2x))dxm = \frac{1}{4} \int_{0}^{\pi} (1 - \cos(2x)) \, dx
m=14[x12sin(2x)]0πm = \frac{1}{4} \left[ x - \frac{1}{2} \sin(2x) \right]_{0}^{\pi}
m=14[(π12sin(2π))(012sin(0))]m = \frac{1}{4} \left[ (\pi - \frac{1}{2} \sin(2\pi)) - (0 - \frac{1}{2} \sin(0)) \right]
m=14[π00+0]=π4m = \frac{1}{4} [\pi - 0 - 0 + 0] = \frac{\pi}{4}
Next, we need to find the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}). The formulas are:
xˉ=1mRxδ(x,y)dA\bar{x} = \frac{1}{m} \iint_R x \delta(x, y) \, dA
yˉ=1mRyδ(x,y)dA\bar{y} = \frac{1}{m} \iint_R y \delta(x, y) \, dA
First, let's find xˉ\bar{x}:
xˉ=1m0π0sinxxydydx\bar{x} = \frac{1}{m} \int_{0}^{\pi} \int_{0}^{\sin x} x y \, dy \, dx
xˉ=1π/40πx[12y2]0sinxdx\bar{x} = \frac{1}{\pi/4} \int_{0}^{\pi} x \left[ \frac{1}{2} y^2 \right]_{0}^{\sin x} dx
xˉ=4π0π12xsin2xdx\bar{x} = \frac{4}{\pi} \int_{0}^{\pi} \frac{1}{2} x \sin^2 x \, dx
xˉ=2π0πxsin2xdx\bar{x} = \frac{2}{\pi} \int_{0}^{\pi} x \sin^2 x \, dx
Using the identity sin2x=1cos(2x)2\sin^2 x = \frac{1 - \cos(2x)}{2},
xˉ=2π0πx1cos(2x)2dx\bar{x} = \frac{2}{\pi} \int_{0}^{\pi} x \frac{1 - \cos(2x)}{2} \, dx
xˉ=1π0π(xxcos(2x))dx\bar{x} = \frac{1}{\pi} \int_{0}^{\pi} (x - x \cos(2x)) \, dx
xˉ=1π[0πxdx0πxcos(2x)dx]\bar{x} = \frac{1}{\pi} \left[ \int_{0}^{\pi} x \, dx - \int_{0}^{\pi} x \cos(2x) \, dx \right]
0πxdx=[12x2]0π=π22\int_{0}^{\pi} x \, dx = \left[ \frac{1}{2} x^2 \right]_{0}^{\pi} = \frac{\pi^2}{2}
0πxcos(2x)dx\int_{0}^{\pi} x \cos(2x) \, dx: Using integration by parts, let u=xu=x, dv=cos(2x)dxdv = \cos(2x) dx, then du=dxdu = dx and v=12sin(2x)v = \frac{1}{2} \sin(2x).
0πxcos(2x)dx=[12xsin(2x)]0π0π12sin(2x)dx\int_{0}^{\pi} x \cos(2x) \, dx = \left[ \frac{1}{2} x \sin(2x) \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{2} \sin(2x) \, dx
=[12xsin(2x)]0π12[12cos(2x)]0π= \left[ \frac{1}{2} x \sin(2x) \right]_{0}^{\pi} - \frac{1}{2} \left[ -\frac{1}{2} \cos(2x) \right]_{0}^{\pi}
=[12πsin(2π)0]+14[cos(2π)cos(0)]=0+14[11]=0= \left[ \frac{1}{2} \pi \sin(2\pi) - 0 \right] + \frac{1}{4} [\cos(2\pi) - \cos(0)] = 0 + \frac{1}{4} [1 - 1] = 0
So, xˉ=1π[π220]=π2\bar{x} = \frac{1}{\pi} \left[ \frac{\pi^2}{2} - 0 \right] = \frac{\pi}{2}
Next, let's find yˉ\bar{y}:
yˉ=1m0π0sinxy2dydx\bar{y} = \frac{1}{m} \int_{0}^{\pi} \int_{0}^{\sin x} y^2 \, dy \, dx
yˉ=1π/40π[13y3]0sinxdx\bar{y} = \frac{1}{\pi/4} \int_{0}^{\pi} \left[ \frac{1}{3} y^3 \right]_{0}^{\sin x} dx
yˉ=4π0π13sin3xdx\bar{y} = \frac{4}{\pi} \int_{0}^{\pi} \frac{1}{3} \sin^3 x \, dx
yˉ=43π0πsin3xdx\bar{y} = \frac{4}{3\pi} \int_{0}^{\pi} \sin^3 x \, dx
sin3x=sinx(1cos2x)=sinxsinxcos2x\sin^3 x = \sin x (1 - \cos^2 x) = \sin x - \sin x \cos^2 x
0πsin3xdx=0π(sinxsinxcos2x)dx\int_{0}^{\pi} \sin^3 x \, dx = \int_{0}^{\pi} (\sin x - \sin x \cos^2 x) \, dx
=[cosx]0π0πsinxcos2xdx= \left[ -\cos x \right]_{0}^{\pi} - \int_{0}^{\pi} \sin x \cos^2 x \, dx
=[cos(π)(cos(0))]0πsinxcos2xdx= [-\cos(\pi) - (-\cos(0))] - \int_{0}^{\pi} \sin x \cos^2 x \, dx
=[(1)(1)]0πsinxcos2xdx=20πsinxcos2xdx= [-(-1) - (-1)] - \int_{0}^{\pi} \sin x \cos^2 x \, dx = 2 - \int_{0}^{\pi} \sin x \cos^2 x \, dx
Let u=cosxu = \cos x, du=sinxdxdu = -\sin x \, dx. When x=0x=0, u=1u=1; when x=πx=\pi, u=1u=-1.
0πsinxcos2xdx=11u2du=11u2du=[13u3]11=13(1(1))=23\int_{0}^{\pi} \sin x \cos^2 x \, dx = \int_{1}^{-1} -u^2 \, du = \int_{-1}^{1} u^2 \, du = \left[ \frac{1}{3} u^3 \right]_{-1}^{1} = \frac{1}{3} (1 - (-1)) = \frac{2}{3}
0πsin3xdx=223=43\int_{0}^{\pi} \sin^3 x \, dx = 2 - \frac{2}{3} = \frac{4}{3}
yˉ=43π(43)=169π\bar{y} = \frac{4}{3\pi} \left( \frac{4}{3} \right) = \frac{16}{9\pi}

3. Final Answer

m=π4m = \frac{\pi}{4}
xˉ=π2\bar{x} = \frac{\pi}{2}
yˉ=169π\bar{y} = \frac{16}{9\pi}

Related problems in "Applied Mathematics"

The problem asks us to fill in the blanks with either $g$ (grams) or $kg$ (kilograms) to make the st...

Units of MeasurementWeightConversion
2025/7/17

Warda walks at an average speed of 3 km/hr for 45 minutes before running for half an hour at a certa...

Word ProblemDistanceSpeedTimeRateLinear Equations
2025/7/16

Determine the vertical displacement at the point $I$ of the given structure, due to the effect of th...

Structural AnalysisDeflectionBeam TheoryVirtual WorkEngineering Mechanics
2025/7/16

The problem asks to determine the vertical displacement at point I (which I assume is at the top of ...

Structural MechanicsCastigliano's TheoremBeam BendingStrain EnergyDeflectionIntegration
2025/7/16

The problem asks to determine the vertical displacement at a point "I" (likely implied as the midpoi...

Structural MechanicsBeam DeflectionFlexural RigidityUniformly Distributed Load (UDL)ElasticityVirtual WorkCastigliano's Theorem
2025/7/16

The problem asks us to determine the vertical displacement at a point I (assumed to be a point withi...

Structural MechanicsFinite Element AnalysisVirtual WorkBending MomentDeflectionEngineering
2025/7/16

The problem describes a lottery win of $1,000,000 and presents several options for receiving the pri...

Financial MathematicsPresent ValueAnnuityPerpetuityDiscount Rate
2025/7/16

The problem consists of two parts: (a) An aircraft flies at different speeds and bearings for certai...

TrigonometryDifferentiationDistanceBearingAircraft Navigation
2025/7/15

The problem presents a line graph showing the distance of taxi driver Joe from his home over a 12-ho...

Graph InterpretationDistanceRate of ChangeReal-World Application
2025/7/15

The problem asks to solve a circuit using Kirchhoff's laws. The circuit consists of two voltage sour...

Circuit AnalysisKirchhoff's LawsThevenin's TheoremNorton's TheoremElectrical Engineering
2025/7/14