The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounded by the given curves and with the indicated density. We will solve problem number 5. The curves are $y = e^{-x}$, $y = 0$, $x = 0$, $x = 1$, and the density is $\delta(x, y) = y^2$.

Applied MathematicsCalculusMultiple IntegralsCenter of MassDensityIntegration by Parts
2025/5/25

1. Problem Description

The problem asks us to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of a lamina bounded by the given curves and with the indicated density. We will solve problem number

5. The curves are $y = e^{-x}$, $y = 0$, $x = 0$, $x = 1$, and the density is $\delta(x, y) = y^2$.

2. Solution Steps

First, we calculate the mass mm using the formula:
m=Rδ(x,y)dAm = \iint_R \delta(x, y) dA
In our case, RR is the region bounded by y=exy = e^{-x}, y=0y = 0, x=0x = 0, x=1x = 1, and δ(x,y)=y2\delta(x, y) = y^2. Thus,
m=010exy2dydxm = \int_{0}^{1} \int_{0}^{e^{-x}} y^2 dy dx
m=01[y33]0exdxm = \int_{0}^{1} \left[ \frac{y^3}{3} \right]_{0}^{e^{-x}} dx
m=01e3x3dxm = \int_{0}^{1} \frac{e^{-3x}}{3} dx
m=1301e3xdxm = \frac{1}{3} \int_{0}^{1} e^{-3x} dx
m=13[13e3x]01m = \frac{1}{3} \left[ -\frac{1}{3} e^{-3x} \right]_{0}^{1}
m=13(13e3+13e0)m = \frac{1}{3} \left( -\frac{1}{3} e^{-3} + \frac{1}{3} e^{0} \right)
m=19(1e3)m = \frac{1}{9} (1 - e^{-3})
Next, we calculate the moment about the y-axis, MyM_y:
My=Rxδ(x,y)dAM_y = \iint_R x \delta(x, y) dA
My=010exxy2dydxM_y = \int_{0}^{1} \int_{0}^{e^{-x}} x y^2 dy dx
My=01x[y33]0exdxM_y = \int_{0}^{1} x \left[ \frac{y^3}{3} \right]_{0}^{e^{-x}} dx
My=01xe3x3dxM_y = \int_{0}^{1} x \frac{e^{-3x}}{3} dx
My=1301xe3xdxM_y = \frac{1}{3} \int_{0}^{1} x e^{-3x} dx
Using integration by parts, let u=xu = x, dv=e3xdxdv = e^{-3x} dx, so du=dxdu = dx, v=13e3xv = -\frac{1}{3} e^{-3x}.
udv=uvvdu\int u dv = uv - \int v du
My=13[x3e3x]01130113e3xdxM_y = \frac{1}{3} \left[ -\frac{x}{3} e^{-3x} \right]_{0}^{1} - \frac{1}{3} \int_{0}^{1} -\frac{1}{3} e^{-3x} dx
My=13(13e30)+1901e3xdxM_y = \frac{1}{3} \left( -\frac{1}{3} e^{-3} - 0 \right) + \frac{1}{9} \int_{0}^{1} e^{-3x} dx
My=19e3+19[13e3x]01M_y = -\frac{1}{9} e^{-3} + \frac{1}{9} \left[ -\frac{1}{3} e^{-3x} \right]_{0}^{1}
My=19e3+19(13e3+13)M_y = -\frac{1}{9} e^{-3} + \frac{1}{9} \left( -\frac{1}{3} e^{-3} + \frac{1}{3} \right)
My=19e3127e3+127M_y = -\frac{1}{9} e^{-3} - \frac{1}{27} e^{-3} + \frac{1}{27}
My=127(14e3)M_y = \frac{1}{27} (1 - 4e^{-3})
Then, we calculate the moment about the x-axis, MxM_x:
Mx=Ryδ(x,y)dAM_x = \iint_R y \delta(x, y) dA
Mx=010exyy2dydxM_x = \int_{0}^{1} \int_{0}^{e^{-x}} y y^2 dy dx
Mx=010exy3dydxM_x = \int_{0}^{1} \int_{0}^{e^{-x}} y^3 dy dx
Mx=01[y44]0exdxM_x = \int_{0}^{1} \left[ \frac{y^4}{4} \right]_{0}^{e^{-x}} dx
Mx=01e4x4dxM_x = \int_{0}^{1} \frac{e^{-4x}}{4} dx
Mx=1401e4xdxM_x = \frac{1}{4} \int_{0}^{1} e^{-4x} dx
Mx=14[14e4x]01M_x = \frac{1}{4} \left[ -\frac{1}{4} e^{-4x} \right]_{0}^{1}
Mx=14(14e4+14)M_x = \frac{1}{4} \left( -\frac{1}{4} e^{-4} + \frac{1}{4} \right)
Mx=116(1e4)M_x = \frac{1}{16} (1 - e^{-4})
Finally, we calculate the coordinates of the center of mass:
xˉ=Mym=127(14e3)19(1e3)=14e33(1e3)\bar{x} = \frac{M_y}{m} = \frac{\frac{1}{27}(1 - 4e^{-3})}{\frac{1}{9}(1 - e^{-3})} = \frac{1 - 4e^{-3}}{3(1 - e^{-3})}
yˉ=Mxm=116(1e4)19(1e3)=9(1e4)16(1e3)\bar{y} = \frac{M_x}{m} = \frac{\frac{1}{16}(1 - e^{-4})}{\frac{1}{9}(1 - e^{-3})} = \frac{9(1 - e^{-4})}{16(1 - e^{-3})}

3. Final Answer

m=19(1e3)m = \frac{1}{9}(1 - e^{-3})
xˉ=14e33(1e3)\bar{x} = \frac{1 - 4e^{-3}}{3(1 - e^{-3})}
yˉ=9(1e4)16(1e3)\bar{y} = \frac{9(1 - e^{-4})}{16(1 - e^{-3})}

Related problems in "Applied Mathematics"

Question 33: Yakubu's scores in five out of six subjects are 95, 87, 85, 93, and 94. If he requires ...

AveragesVolume of a PyramidBearingsGeometryWord Problems
2025/6/3

A rectangular parallelepiped-shaped container has a length of 80 cm and a width of 30 cm. 40 identic...

Volume CalculationUnit ConversionRate of ChangeWord Problem
2025/6/3

The problem asks us to establish the opening balance sheet based on the provided information as of J...

AccountingBalance SheetIncome StatementTrial BalanceFinancial Statements
2025/6/2

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor.

ElectronicsResistorsColor CodeUnits ConversionEngineering
2025/6/1

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor, given the standard resist...

ElectronicsResistor Color CodeOhm's Law
2025/6/1

The problem is to determine the reactions at supports A and D for a simply supported beam subjected ...

StaticsStructural MechanicsBeam AnalysisEquilibriumMoment Calculation
2025/6/1

Two people, one on a motorcycle and one on a bicycle, start from two cities that are 450 km apart an...

Word ProblemDistance, Rate, and TimeLinear Equations
2025/5/31

A convex lens has a focal length of 15 cm. As shown in the diagram, the lens is placed on a laborato...

OpticsLens FormulaRay DiagramsMagnification
2025/5/31

The problem asks to find the AC signal output, $V_0$, of the given circuit. The circuit consists of ...

Circuit AnalysisAC SignalsDiodeApproximation
2025/5/30

The problem asks to find the AC signal output $V_0$ of the given circuit. The circuit consists of a ...

Circuit AnalysisElectronicsDiodesAC SignalVoltage DividerOhm's Law
2025/5/29