First, we calculate the mass m using the formula: m=∬Rδ(x,y)dA In our case, R is the region bounded by y=e−x, y=0, x=0, x=1, and δ(x,y)=y2. Thus, m=∫01∫0e−xy2dydx m=∫01[3y3]0e−xdx m=∫013e−3xdx m=31∫01e−3xdx m=31[−31e−3x]01 m=31(−31e−3+31e0) m=91(1−e−3) Next, we calculate the moment about the y-axis, My: My=∬Rxδ(x,y)dA My=∫01∫0e−xxy2dydx My=∫01x[3y3]0e−xdx My=∫01x3e−3xdx My=31∫01xe−3xdx Using integration by parts, let u=x, dv=e−3xdx, so du=dx, v=−31e−3x. ∫udv=uv−∫vdu My=31[−3xe−3x]01−31∫01−31e−3xdx My=31(−31e−3−0)+91∫01e−3xdx My=−91e−3+91[−31e−3x]01 My=−91e−3+91(−31e−3+31) My=−91e−3−271e−3+271 My=271(1−4e−3) Then, we calculate the moment about the x-axis, Mx: Mx=∬Ryδ(x,y)dA Mx=∫01∫0e−xyy2dydx Mx=∫01∫0e−xy3dydx Mx=∫01[4y4]0e−xdx Mx=∫014e−4xdx Mx=41∫01e−4xdx Mx=41[−41e−4x]01 Mx=41(−41e−4+41) Mx=161(1−e−4) Finally, we calculate the coordinates of the center of mass:
xˉ=mMy=91(1−e−3)271(1−4e−3)=3(1−e−3)1−4e−3 yˉ=mMx=91(1−e−3)161(1−e−4)=16(1−e−3)9(1−e−4)