The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the given curves and with the indicated density for problem 5. The curves are $y = e^{-x}$, $y = 0$, $x = 0$, $x = 1$, and the density is $\delta(x, y) = y^2$.

Applied MathematicsCalculusMultiple IntegralsCenter of MassDensityIntegration by Parts
2025/5/25

1. Problem Description

The problem asks to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the given curves and with the indicated density for problem

5. The curves are $y = e^{-x}$, $y = 0$, $x = 0$, $x = 1$, and the density is $\delta(x, y) = y^2$.

2. Solution Steps

First, we find the mass mm using the double integral:
m=010exy2dydxm = \int_{0}^{1} \int_{0}^{e^{-x}} y^2 \, dy \, dx
m=01[y33]0exdxm = \int_{0}^{1} \left[ \frac{y^3}{3} \right]_{0}^{e^{-x}} dx
m=01(ex)33dx=1301e3xdxm = \int_{0}^{1} \frac{(e^{-x})^3}{3} dx = \frac{1}{3} \int_{0}^{1} e^{-3x} dx
m=13[13e3x]01m = \frac{1}{3} \left[ -\frac{1}{3} e^{-3x} \right]_{0}^{1}
m=13(13e3(13e0))m = \frac{1}{3} \left( -\frac{1}{3} e^{-3} - \left( -\frac{1}{3} e^{0} \right) \right)
m=13(13e3+13)=19(1e3)m = \frac{1}{3} \left( -\frac{1}{3} e^{-3} + \frac{1}{3} \right) = \frac{1}{9} (1 - e^{-3})
Next, we find MxM_x using the double integral:
Mx=010exyy2dydxM_x = \int_{0}^{1} \int_{0}^{e^{-x}} y \cdot y^2 \, dy \, dx
Mx=010exy3dydxM_x = \int_{0}^{1} \int_{0}^{e^{-x}} y^3 \, dy \, dx
Mx=01[y44]0exdxM_x = \int_{0}^{1} \left[ \frac{y^4}{4} \right]_{0}^{e^{-x}} dx
Mx=01(ex)44dx=1401e4xdxM_x = \int_{0}^{1} \frac{(e^{-x})^4}{4} dx = \frac{1}{4} \int_{0}^{1} e^{-4x} dx
Mx=14[14e4x]01M_x = \frac{1}{4} \left[ -\frac{1}{4} e^{-4x} \right]_{0}^{1}
Mx=14(14e4(14e0))M_x = \frac{1}{4} \left( -\frac{1}{4} e^{-4} - \left( -\frac{1}{4} e^{0} \right) \right)
Mx=14(14e4+14)=116(1e4)M_x = \frac{1}{4} \left( -\frac{1}{4} e^{-4} + \frac{1}{4} \right) = \frac{1}{16} (1 - e^{-4})
Then, we find MyM_y using the double integral:
My=010exxy2dydxM_y = \int_{0}^{1} \int_{0}^{e^{-x}} x \cdot y^2 \, dy \, dx
My=01x[y33]0exdxM_y = \int_{0}^{1} x \left[ \frac{y^3}{3} \right]_{0}^{e^{-x}} dx
My=01x(ex)33dx=1301xe3xdxM_y = \int_{0}^{1} x \frac{(e^{-x})^3}{3} dx = \frac{1}{3} \int_{0}^{1} x e^{-3x} dx
We use integration by parts: u=xu = x, dv=e3xdxdv = e^{-3x} dx. Then du=dxdu = dx and v=13e3xv = -\frac{1}{3} e^{-3x}.
My=13[x3e3x]01130113e3xdxM_y = \frac{1}{3} \left[ -\frac{x}{3} e^{-3x} \right]_{0}^{1} - \frac{1}{3} \int_{0}^{1} -\frac{1}{3} e^{-3x} dx
My=13(13e30)+1901e3xdxM_y = \frac{1}{3} \left( -\frac{1}{3} e^{-3} - 0 \right) + \frac{1}{9} \int_{0}^{1} e^{-3x} dx
My=19e3+19[13e3x]01M_y = -\frac{1}{9} e^{-3} + \frac{1}{9} \left[ -\frac{1}{3} e^{-3x} \right]_{0}^{1}
My=19e3+19(13e3(13e0))M_y = -\frac{1}{9} e^{-3} + \frac{1}{9} \left( -\frac{1}{3} e^{-3} - \left( -\frac{1}{3} e^{0} \right) \right)
My=19e3+19(13e3+13)=19e3127e3+127=127(14e3)M_y = -\frac{1}{9} e^{-3} + \frac{1}{9} \left( -\frac{1}{3} e^{-3} + \frac{1}{3} \right) = -\frac{1}{9} e^{-3} - \frac{1}{27} e^{-3} + \frac{1}{27} = \frac{1}{27} (1 - 4e^{-3})
Now, we can find the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}):
xˉ=Mym=127(14e3)19(1e3)=14e33(1e3)\bar{x} = \frac{M_y}{m} = \frac{\frac{1}{27}(1 - 4e^{-3})}{\frac{1}{9}(1 - e^{-3})} = \frac{1 - 4e^{-3}}{3(1 - e^{-3})}
yˉ=Mxm=116(1e4)19(1e3)=9(1e4)16(1e3)\bar{y} = \frac{M_x}{m} = \frac{\frac{1}{16}(1 - e^{-4})}{\frac{1}{9}(1 - e^{-3})} = \frac{9(1 - e^{-4})}{16(1 - e^{-3})}

3. Final Answer

m=19(1e3)m = \frac{1}{9} (1 - e^{-3})
xˉ=14e33(1e3)\bar{x} = \frac{1 - 4e^{-3}}{3(1 - e^{-3})}
yˉ=9(1e4)16(1e3)\bar{y} = \frac{9(1 - e^{-4})}{16(1 - e^{-3})}

Related problems in "Applied Mathematics"

Question 33: Yakubu's scores in five out of six subjects are 95, 87, 85, 93, and 94. If he requires ...

AveragesVolume of a PyramidBearingsGeometryWord Problems
2025/6/3

A rectangular parallelepiped-shaped container has a length of 80 cm and a width of 30 cm. 40 identic...

Volume CalculationUnit ConversionRate of ChangeWord Problem
2025/6/3

The problem asks us to establish the opening balance sheet based on the provided information as of J...

AccountingBalance SheetIncome StatementTrial BalanceFinancial Statements
2025/6/2

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor.

ElectronicsResistorsColor CodeUnits ConversionEngineering
2025/6/1

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor, given the standard resist...

ElectronicsResistor Color CodeOhm's Law
2025/6/1

The problem is to determine the reactions at supports A and D for a simply supported beam subjected ...

StaticsStructural MechanicsBeam AnalysisEquilibriumMoment Calculation
2025/6/1

Two people, one on a motorcycle and one on a bicycle, start from two cities that are 450 km apart an...

Word ProblemDistance, Rate, and TimeLinear Equations
2025/5/31

A convex lens has a focal length of 15 cm. As shown in the diagram, the lens is placed on a laborato...

OpticsLens FormulaRay DiagramsMagnification
2025/5/31

The problem asks to find the AC signal output, $V_0$, of the given circuit. The circuit consists of ...

Circuit AnalysisAC SignalsDiodeApproximation
2025/5/30

The problem asks to find the AC signal output $V_0$ of the given circuit. The circuit consists of a ...

Circuit AnalysisElectronicsDiodesAC SignalVoltage DividerOhm's Law
2025/5/29