The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the curve $r = 2\sin\theta$ with density $\delta(r, \theta) = r$.

Applied MathematicsCalculusMultiple IntegralsCenter of MassPolar CoordinatesLaminaDensity Function
2025/5/25

1. Problem Description

The problem asks to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the curve r=2sinθr = 2\sin\theta with density δ(r,θ)=r\delta(r, \theta) = r.

2. Solution Steps

First, we need to find the mass mm. The formula for mass in polar coordinates is:
m=Rδ(r,θ)dA=Rδ(r,θ)rdrdθm = \iint_R \delta(r, \theta) dA = \iint_R \delta(r, \theta) r dr d\theta
The curve r=2sinθr = 2\sin\theta traces a circle in the xyxy-plane centered at (0,1)(0, 1) with radius 11. Therefore, θ\theta ranges from 00 to π\pi. Also, rr ranges from 00 to 2sinθ2\sin\theta. So,
m=0π02sinθrrdrdθ=0π02sinθr2drdθm = \int_0^\pi \int_0^{2\sin\theta} r \cdot r dr d\theta = \int_0^\pi \int_0^{2\sin\theta} r^2 dr d\theta
m=0π[13r3]02sinθdθ=0π13(2sinθ)3dθ=830πsin3θdθm = \int_0^\pi [\frac{1}{3}r^3]_0^{2\sin\theta} d\theta = \int_0^\pi \frac{1}{3} (2\sin\theta)^3 d\theta = \frac{8}{3} \int_0^\pi \sin^3\theta d\theta
Now, we need to evaluate 0πsin3θdθ\int_0^\pi \sin^3\theta d\theta. We can use the identity sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta
0πsin3θdθ=0πsinθ(1cos2θ)dθ\int_0^\pi \sin^3\theta d\theta = \int_0^\pi \sin\theta (1 - \cos^2\theta) d\theta
Let u=cosθu = \cos\theta, then du=sinθdθdu = -\sin\theta d\theta. When θ=0\theta = 0, u=1u = 1. When θ=π\theta = \pi, u=1u = -1.
0πsinθ(1cos2θ)dθ=11(1u2)du=11(1u2)du\int_0^\pi \sin\theta (1 - \cos^2\theta) d\theta = -\int_1^{-1} (1 - u^2) du = \int_{-1}^1 (1 - u^2) du
=[u13u3]11=(113)(113(1))=(113)(1+13)=23(23)=43= [u - \frac{1}{3}u^3]_{-1}^1 = (1 - \frac{1}{3}) - (-1 - \frac{1}{3}(-1)) = (1 - \frac{1}{3}) - (-1 + \frac{1}{3}) = \frac{2}{3} - (-\frac{2}{3}) = \frac{4}{3}
So, m=8343=329m = \frac{8}{3} \cdot \frac{4}{3} = \frac{32}{9}
Next, we find the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}). The formulas are:
xˉ=1mRxδ(r,θ)dA\bar{x} = \frac{1}{m} \iint_R x \delta(r, \theta) dA and yˉ=1mRyδ(r,θ)dA\bar{y} = \frac{1}{m} \iint_R y \delta(r, \theta) dA
In polar coordinates, x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta. Thus,
xˉ=1m0π02sinθ(rcosθ)rrdrdθ=1m0π02sinθr3cosθdrdθ\bar{x} = \frac{1}{m} \int_0^\pi \int_0^{2\sin\theta} (r\cos\theta) r \cdot r dr d\theta = \frac{1}{m} \int_0^\pi \int_0^{2\sin\theta} r^3 \cos\theta dr d\theta
xˉ=1m0π[14r4]02sinθcosθdθ=1m0π14(2sinθ)4cosθdθ=1m0π4sin4θcosθdθ\bar{x} = \frac{1}{m} \int_0^\pi [\frac{1}{4}r^4]_0^{2\sin\theta} \cos\theta d\theta = \frac{1}{m} \int_0^\pi \frac{1}{4} (2\sin\theta)^4 \cos\theta d\theta = \frac{1}{m} \int_0^\pi 4\sin^4\theta \cos\theta d\theta
Let u=sinθu = \sin\theta, then du=cosθdθdu = \cos\theta d\theta. When θ=0\theta = 0, u=0u = 0. When θ=π\theta = \pi, u=0u = 0.
So, 0π4sin4θcosθdθ=400u4du=0\int_0^\pi 4\sin^4\theta \cos\theta d\theta = 4 \int_0^0 u^4 du = 0
Thus, xˉ=1m0=0\bar{x} = \frac{1}{m} \cdot 0 = 0
yˉ=1m0π02sinθ(rsinθ)rrdrdθ=1m0π02sinθr3sinθdrdθ\bar{y} = \frac{1}{m} \int_0^\pi \int_0^{2\sin\theta} (r\sin\theta) r \cdot r dr d\theta = \frac{1}{m} \int_0^\pi \int_0^{2\sin\theta} r^3 \sin\theta dr d\theta
yˉ=1m0π[14r4]02sinθsinθdθ=1m0π14(2sinθ)4sinθdθ=1m0π4sin5θdθ\bar{y} = \frac{1}{m} \int_0^\pi [\frac{1}{4}r^4]_0^{2\sin\theta} \sin\theta d\theta = \frac{1}{m} \int_0^\pi \frac{1}{4} (2\sin\theta)^4 \sin\theta d\theta = \frac{1}{m} \int_0^\pi 4\sin^5\theta d\theta
yˉ=4m0πsin5θdθ\bar{y} = \frac{4}{m} \int_0^\pi \sin^5\theta d\theta
Now, we need to evaluate 0πsin5θdθ\int_0^\pi \sin^5\theta d\theta.
0πsin5θdθ=0πsinθ(1cos2θ)2dθ=0πsinθ(12cos2θ+cos4θ)dθ\int_0^\pi \sin^5\theta d\theta = \int_0^\pi \sin\theta (1 - \cos^2\theta)^2 d\theta = \int_0^\pi \sin\theta (1 - 2\cos^2\theta + \cos^4\theta) d\theta
Let u=cosθu = \cos\theta, then du=sinθdθdu = -\sin\theta d\theta. When θ=0\theta = 0, u=1u = 1. When θ=π\theta = \pi, u=1u = -1.
0πsinθ(12cos2θ+cos4θ)dθ=11(12u2+u4)du=11(12u2+u4)du\int_0^\pi \sin\theta (1 - 2\cos^2\theta + \cos^4\theta) d\theta = -\int_1^{-1} (1 - 2u^2 + u^4) du = \int_{-1}^1 (1 - 2u^2 + u^4) du
=[u23u3+15u5]11=(123+15)(1+2315)=2(123+15)=2(1510+315)=2(815)=1615= [u - \frac{2}{3}u^3 + \frac{1}{5}u^5]_{-1}^1 = (1 - \frac{2}{3} + \frac{1}{5}) - (-1 + \frac{2}{3} - \frac{1}{5}) = 2(1 - \frac{2}{3} + \frac{1}{5}) = 2(\frac{15 - 10 + 3}{15}) = 2(\frac{8}{15}) = \frac{16}{15}
So, yˉ=4m1615=43291615=36321615=981615=91215=1815=65\bar{y} = \frac{4}{m} \cdot \frac{16}{15} = \frac{4}{\frac{32}{9}} \cdot \frac{16}{15} = \frac{36}{32} \cdot \frac{16}{15} = \frac{9}{8} \cdot \frac{16}{15} = \frac{9}{1} \cdot \frac{2}{15} = \frac{18}{15} = \frac{6}{5}

3. Final Answer

m=329m = \frac{32}{9}
xˉ=0\bar{x} = 0
yˉ=65\bar{y} = \frac{6}{5}
The mass is 329\frac{32}{9} and the center of mass is (0,65)(0, \frac{6}{5}).

Related problems in "Applied Mathematics"

The problem asks us to fill in the blanks with either $g$ (grams) or $kg$ (kilograms) to make the st...

Units of MeasurementWeightConversion
2025/7/17

Warda walks at an average speed of 3 km/hr for 45 minutes before running for half an hour at a certa...

Word ProblemDistanceSpeedTimeRateLinear Equations
2025/7/16

Determine the vertical displacement at the point $I$ of the given structure, due to the effect of th...

Structural AnalysisDeflectionBeam TheoryVirtual WorkEngineering Mechanics
2025/7/16

The problem asks to determine the vertical displacement at point I (which I assume is at the top of ...

Structural MechanicsCastigliano's TheoremBeam BendingStrain EnergyDeflectionIntegration
2025/7/16

The problem asks to determine the vertical displacement at a point "I" (likely implied as the midpoi...

Structural MechanicsBeam DeflectionFlexural RigidityUniformly Distributed Load (UDL)ElasticityVirtual WorkCastigliano's Theorem
2025/7/16

The problem asks us to determine the vertical displacement at a point I (assumed to be a point withi...

Structural MechanicsFinite Element AnalysisVirtual WorkBending MomentDeflectionEngineering
2025/7/16

The problem describes a lottery win of $1,000,000 and presents several options for receiving the pri...

Financial MathematicsPresent ValueAnnuityPerpetuityDiscount Rate
2025/7/16

The problem consists of two parts: (a) An aircraft flies at different speeds and bearings for certai...

TrigonometryDifferentiationDistanceBearingAircraft Navigation
2025/7/15

The problem presents a line graph showing the distance of taxi driver Joe from his home over a 12-ho...

Graph InterpretationDistanceRate of ChangeReal-World Application
2025/7/15

The problem asks to solve a circuit using Kirchhoff's laws. The circuit consists of two voltage sour...

Circuit AnalysisKirchhoff's LawsThevenin's TheoremNorton's TheoremElectrical Engineering
2025/7/14