First, we find the mass m. The mass is given by the double integral of the density over the region. In polar coordinates, dA=rdrdθ. So, m=∫0π∫12δ(r,θ)rdrdθ=∫0π∫12r1rdrdθ=∫0π∫121drdθ. Evaluating the inner integral:
∫121dr=[r]12=2−1=1. Evaluating the outer integral:
m=∫0π1dθ=[θ]0π=π−0=π. Next, we find xˉ and yˉ. xˉ=mMy, where My=∬xδ(r,θ)dA. Since x=rcosθ, My=∫0π∫12(rcosθ)(r1)rdrdθ=∫0π∫12rcosθdrdθ=∫0πcosθ[2r2]12dθ=∫0πcosθ(24−21)dθ=23∫0πcosθdθ=23[sinθ]0π=23(sinπ−sin0)=23(0−0)=0. Therefore, xˉ=mMy=π0=0. yˉ=mMx, where Mx=∬yδ(r,θ)dA. Since y=rsinθ, Mx=∫0π∫12(rsinθ)(r1)rdrdθ=∫0π∫12rsinθdrdθ=∫0πsinθ[2r2]12dθ=∫0πsinθ(24−21)dθ=23∫0πsinθdθ=23[−cosθ]0π=23(−cosπ+cos0)=23(−(−1)+1)=23(1+1)=23(2)=3. Therefore, yˉ=mMx=π3.