We are asked to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the curve $r = 1 + \cos\theta$ with density $\delta(r, \theta) = r$.

Applied MathematicsCalculusDouble IntegralsCenter of MassPolar CoordinatesCardioidDensity Function
2025/5/25

1. Problem Description

We are asked to find the mass mm and center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the curve r=1+cosθr = 1 + \cos\theta with density δ(r,θ)=r\delta(r, \theta) = r.

2. Solution Steps

The mass mm is given by the double integral of the density function over the region:
m=Rδ(r,θ)dAm = \iint_R \delta(r, \theta) \, dA
Since the region is described in polar coordinates, we have dA=rdrdθdA = r \, dr \, d\theta. The curve r=1+cosθr = 1 + \cos\theta traces out a cardioid, and to traverse the entire region, θ\theta varies from 00 to 2π2\pi and rr varies from 00 to 1+cosθ1 + \cos\theta. Thus,
m=02π01+cosθrrdrdθ=02π01+cosθr2drdθm = \int_0^{2\pi} \int_0^{1+\cos\theta} r \cdot r \, dr \, d\theta = \int_0^{2\pi} \int_0^{1+\cos\theta} r^2 \, dr \, d\theta
First, we integrate with respect to rr:
01+cosθr2dr=13r301+cosθ=13(1+cosθ)3\int_0^{1+\cos\theta} r^2 \, dr = \frac{1}{3} r^3 \Big|_0^{1+\cos\theta} = \frac{1}{3} (1+\cos\theta)^3
Now, we integrate with respect to θ\theta:
m=1302π(1+cosθ)3dθ=1302π(1+3cosθ+3cos2θ+cos3θ)dθm = \frac{1}{3} \int_0^{2\pi} (1+\cos\theta)^3 \, d\theta = \frac{1}{3} \int_0^{2\pi} (1 + 3\cos\theta + 3\cos^2\theta + \cos^3\theta) \, d\theta
We know that 02πcosθdθ=0\int_0^{2\pi} \cos\theta \, d\theta = 0.
Also, 02πcos2θdθ=02π1+cos(2θ)2dθ=12[θ+12sin(2θ)]02π=12(2π)=π\int_0^{2\pi} \cos^2\theta \, d\theta = \int_0^{2\pi} \frac{1+\cos(2\theta)}{2} \, d\theta = \frac{1}{2} \left[ \theta + \frac{1}{2}\sin(2\theta) \right]_0^{2\pi} = \frac{1}{2} (2\pi) = \pi.
Furthermore, 02πcos3θdθ=02πcosθ(1sin2θ)dθ=02π(cosθcosθsin2θ)dθ=[sinθ13sin3θ]02π=0\int_0^{2\pi} \cos^3\theta \, d\theta = \int_0^{2\pi} \cos\theta (1-\sin^2\theta) \, d\theta = \int_0^{2\pi} (\cos\theta - \cos\theta \sin^2\theta) \, d\theta = \left[\sin\theta - \frac{1}{3}\sin^3\theta \right]_0^{2\pi} = 0.
Therefore,
m=1302π(1+3cos2θ)dθ=13(2π+3π)=5π3m = \frac{1}{3} \int_0^{2\pi} (1 + 3\cos^2\theta) \, d\theta = \frac{1}{3} (2\pi + 3\pi) = \frac{5\pi}{3}
Now we calculate xˉ\bar{x} and yˉ\bar{y}:
xˉ=1mRxδ(r,θ)dA\bar{x} = \frac{1}{m} \iint_R x \delta(r, \theta) \, dA and yˉ=1mRyδ(r,θ)dA\bar{y} = \frac{1}{m} \iint_R y \delta(r, \theta) \, dA
We have x=rcosθx = r \cos\theta and y=rsinθy = r \sin\theta, so
xˉ=1m02π01+cosθ(rcosθ)rrdrdθ=1m02π01+cosθr3cosθdrdθ\bar{x} = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} (r\cos\theta) r \cdot r \, dr \, d\theta = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \cos\theta \, dr \, d\theta
yˉ=1m02π01+cosθ(rsinθ)rrdrdθ=1m02π01+cosθr3sinθdrdθ\bar{y} = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} (r\sin\theta) r \cdot r \, dr \, d\theta = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \sin\theta \, dr \, d\theta
xˉ=35π02π01+cosθr3cosθdrdθ=35π02π14(1+cosθ)4cosθdθ\bar{x} = \frac{3}{5\pi} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \cos\theta \, dr \, d\theta = \frac{3}{5\pi} \int_0^{2\pi} \frac{1}{4} (1+\cos\theta)^4 \cos\theta \, d\theta
=320π02π(1+4cosθ+6cos2θ+4cos3θ+cos4θ)cosθdθ= \frac{3}{20\pi} \int_0^{2\pi} (1+4\cos\theta + 6\cos^2\theta + 4\cos^3\theta + \cos^4\theta)\cos\theta \, d\theta
=320π02π(cosθ+4cos2θ+6cos3θ+4cos4θ+cos5θ)dθ= \frac{3}{20\pi} \int_0^{2\pi} (\cos\theta + 4\cos^2\theta + 6\cos^3\theta + 4\cos^4\theta + \cos^5\theta) \, d\theta
We know 02πcosθdθ=0\int_0^{2\pi} \cos\theta d\theta = 0, 02πcos3θdθ=0\int_0^{2\pi} \cos^3\theta d\theta = 0, 02πcos5θdθ=0\int_0^{2\pi} \cos^5\theta d\theta = 0, and 02πcos2θdθ=π\int_0^{2\pi} \cos^2\theta d\theta = \pi. Also 02πcos4θdθ=3π4\int_0^{2\pi} \cos^4\theta \, d\theta = \frac{3\pi}{4}.
So, xˉ=320π(0+4π+0+43π4+0)=320π(4π+3π)=320π(7π)=2120\bar{x} = \frac{3}{20\pi} (0 + 4\pi + 0 + 4 \cdot \frac{3\pi}{4} + 0) = \frac{3}{20\pi} (4\pi + 3\pi) = \frac{3}{20\pi} (7\pi) = \frac{21}{20}.
yˉ=35π02π01+cosθr3sinθdrdθ=35π02π14(1+cosθ)4sinθdθ\bar{y} = \frac{3}{5\pi} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \sin\theta \, dr \, d\theta = \frac{3}{5\pi} \int_0^{2\pi} \frac{1}{4} (1+\cos\theta)^4 \sin\theta \, d\theta
=320π02π(1+cosθ)4sinθdθ= \frac{3}{20\pi} \int_0^{2\pi} (1+\cos\theta)^4 \sin\theta \, d\theta
Let u=1+cosθu = 1 + \cos\theta. Then du=sinθdθdu = -\sin\theta \, d\theta.
yˉ=320π22u4du=0\bar{y} = \frac{3}{20\pi} \int_{2}^{2} -u^4 \, du = 0.

3. Final Answer

m=5π3m = \frac{5\pi}{3}
(xˉ,yˉ)=(2120,0)(\bar{x}, \bar{y}) = (\frac{21}{20}, 0)

Related problems in "Applied Mathematics"

Question 33: Yakubu's scores in five out of six subjects are 95, 87, 85, 93, and 94. If he requires ...

AveragesVolume of a PyramidBearingsGeometryWord Problems
2025/6/3

A rectangular parallelepiped-shaped container has a length of 80 cm and a width of 30 cm. 40 identic...

Volume CalculationUnit ConversionRate of ChangeWord Problem
2025/6/3

The problem asks us to establish the opening balance sheet based on the provided information as of J...

AccountingBalance SheetIncome StatementTrial BalanceFinancial Statements
2025/6/2

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor.

ElectronicsResistorsColor CodeUnits ConversionEngineering
2025/6/1

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor, given the standard resist...

ElectronicsResistor Color CodeOhm's Law
2025/6/1

The problem is to determine the reactions at supports A and D for a simply supported beam subjected ...

StaticsStructural MechanicsBeam AnalysisEquilibriumMoment Calculation
2025/6/1

Two people, one on a motorcycle and one on a bicycle, start from two cities that are 450 km apart an...

Word ProblemDistance, Rate, and TimeLinear Equations
2025/5/31

A convex lens has a focal length of 15 cm. As shown in the diagram, the lens is placed on a laborato...

OpticsLens FormulaRay DiagramsMagnification
2025/5/31

The problem asks to find the AC signal output, $V_0$, of the given circuit. The circuit consists of ...

Circuit AnalysisAC SignalsDiodeApproximation
2025/5/30

The problem asks to find the AC signal output $V_0$ of the given circuit. The circuit consists of a ...

Circuit AnalysisElectronicsDiodesAC SignalVoltage DividerOhm's Law
2025/5/29