We are asked to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the curve $r = 1 + \cos\theta$ with density $\delta(r, \theta) = r$.

Applied MathematicsCalculusDouble IntegralsCenter of MassPolar CoordinatesCardioidDensity Function
2025/5/25

1. Problem Description

We are asked to find the mass mm and center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the curve r=1+cosθr = 1 + \cos\theta with density δ(r,θ)=r\delta(r, \theta) = r.

2. Solution Steps

The mass mm is given by the double integral of the density function over the region:
m=Rδ(r,θ)dAm = \iint_R \delta(r, \theta) \, dA
Since the region is described in polar coordinates, we have dA=rdrdθdA = r \, dr \, d\theta. The curve r=1+cosθr = 1 + \cos\theta traces out a cardioid, and to traverse the entire region, θ\theta varies from 00 to 2π2\pi and rr varies from 00 to 1+cosθ1 + \cos\theta. Thus,
m=02π01+cosθrrdrdθ=02π01+cosθr2drdθm = \int_0^{2\pi} \int_0^{1+\cos\theta} r \cdot r \, dr \, d\theta = \int_0^{2\pi} \int_0^{1+\cos\theta} r^2 \, dr \, d\theta
First, we integrate with respect to rr:
01+cosθr2dr=13r301+cosθ=13(1+cosθ)3\int_0^{1+\cos\theta} r^2 \, dr = \frac{1}{3} r^3 \Big|_0^{1+\cos\theta} = \frac{1}{3} (1+\cos\theta)^3
Now, we integrate with respect to θ\theta:
m=1302π(1+cosθ)3dθ=1302π(1+3cosθ+3cos2θ+cos3θ)dθm = \frac{1}{3} \int_0^{2\pi} (1+\cos\theta)^3 \, d\theta = \frac{1}{3} \int_0^{2\pi} (1 + 3\cos\theta + 3\cos^2\theta + \cos^3\theta) \, d\theta
We know that 02πcosθdθ=0\int_0^{2\pi} \cos\theta \, d\theta = 0.
Also, 02πcos2θdθ=02π1+cos(2θ)2dθ=12[θ+12sin(2θ)]02π=12(2π)=π\int_0^{2\pi} \cos^2\theta \, d\theta = \int_0^{2\pi} \frac{1+\cos(2\theta)}{2} \, d\theta = \frac{1}{2} \left[ \theta + \frac{1}{2}\sin(2\theta) \right]_0^{2\pi} = \frac{1}{2} (2\pi) = \pi.
Furthermore, 02πcos3θdθ=02πcosθ(1sin2θ)dθ=02π(cosθcosθsin2θ)dθ=[sinθ13sin3θ]02π=0\int_0^{2\pi} \cos^3\theta \, d\theta = \int_0^{2\pi} \cos\theta (1-\sin^2\theta) \, d\theta = \int_0^{2\pi} (\cos\theta - \cos\theta \sin^2\theta) \, d\theta = \left[\sin\theta - \frac{1}{3}\sin^3\theta \right]_0^{2\pi} = 0.
Therefore,
m=1302π(1+3cos2θ)dθ=13(2π+3π)=5π3m = \frac{1}{3} \int_0^{2\pi} (1 + 3\cos^2\theta) \, d\theta = \frac{1}{3} (2\pi + 3\pi) = \frac{5\pi}{3}
Now we calculate xˉ\bar{x} and yˉ\bar{y}:
xˉ=1mRxδ(r,θ)dA\bar{x} = \frac{1}{m} \iint_R x \delta(r, \theta) \, dA and yˉ=1mRyδ(r,θ)dA\bar{y} = \frac{1}{m} \iint_R y \delta(r, \theta) \, dA
We have x=rcosθx = r \cos\theta and y=rsinθy = r \sin\theta, so
xˉ=1m02π01+cosθ(rcosθ)rrdrdθ=1m02π01+cosθr3cosθdrdθ\bar{x} = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} (r\cos\theta) r \cdot r \, dr \, d\theta = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \cos\theta \, dr \, d\theta
yˉ=1m02π01+cosθ(rsinθ)rrdrdθ=1m02π01+cosθr3sinθdrdθ\bar{y} = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} (r\sin\theta) r \cdot r \, dr \, d\theta = \frac{1}{m} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \sin\theta \, dr \, d\theta
xˉ=35π02π01+cosθr3cosθdrdθ=35π02π14(1+cosθ)4cosθdθ\bar{x} = \frac{3}{5\pi} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \cos\theta \, dr \, d\theta = \frac{3}{5\pi} \int_0^{2\pi} \frac{1}{4} (1+\cos\theta)^4 \cos\theta \, d\theta
=320π02π(1+4cosθ+6cos2θ+4cos3θ+cos4θ)cosθdθ= \frac{3}{20\pi} \int_0^{2\pi} (1+4\cos\theta + 6\cos^2\theta + 4\cos^3\theta + \cos^4\theta)\cos\theta \, d\theta
=320π02π(cosθ+4cos2θ+6cos3θ+4cos4θ+cos5θ)dθ= \frac{3}{20\pi} \int_0^{2\pi} (\cos\theta + 4\cos^2\theta + 6\cos^3\theta + 4\cos^4\theta + \cos^5\theta) \, d\theta
We know 02πcosθdθ=0\int_0^{2\pi} \cos\theta d\theta = 0, 02πcos3θdθ=0\int_0^{2\pi} \cos^3\theta d\theta = 0, 02πcos5θdθ=0\int_0^{2\pi} \cos^5\theta d\theta = 0, and 02πcos2θdθ=π\int_0^{2\pi} \cos^2\theta d\theta = \pi. Also 02πcos4θdθ=3π4\int_0^{2\pi} \cos^4\theta \, d\theta = \frac{3\pi}{4}.
So, xˉ=320π(0+4π+0+43π4+0)=320π(4π+3π)=320π(7π)=2120\bar{x} = \frac{3}{20\pi} (0 + 4\pi + 0 + 4 \cdot \frac{3\pi}{4} + 0) = \frac{3}{20\pi} (4\pi + 3\pi) = \frac{3}{20\pi} (7\pi) = \frac{21}{20}.
yˉ=35π02π01+cosθr3sinθdrdθ=35π02π14(1+cosθ)4sinθdθ\bar{y} = \frac{3}{5\pi} \int_0^{2\pi} \int_0^{1+\cos\theta} r^3 \sin\theta \, dr \, d\theta = \frac{3}{5\pi} \int_0^{2\pi} \frac{1}{4} (1+\cos\theta)^4 \sin\theta \, d\theta
=320π02π(1+cosθ)4sinθdθ= \frac{3}{20\pi} \int_0^{2\pi} (1+\cos\theta)^4 \sin\theta \, d\theta
Let u=1+cosθu = 1 + \cos\theta. Then du=sinθdθdu = -\sin\theta \, d\theta.
yˉ=320π22u4du=0\bar{y} = \frac{3}{20\pi} \int_{2}^{2} -u^4 \, du = 0.

3. Final Answer

m=5π3m = \frac{5\pi}{3}
(xˉ,yˉ)=(2120,0)(\bar{x}, \bar{y}) = (\frac{21}{20}, 0)

Related problems in "Applied Mathematics"

The problem asks us to fill in the blanks with either $g$ (grams) or $kg$ (kilograms) to make the st...

Units of MeasurementWeightConversion
2025/7/17

Warda walks at an average speed of 3 km/hr for 45 minutes before running for half an hour at a certa...

Word ProblemDistanceSpeedTimeRateLinear Equations
2025/7/16

Determine the vertical displacement at the point $I$ of the given structure, due to the effect of th...

Structural AnalysisDeflectionBeam TheoryVirtual WorkEngineering Mechanics
2025/7/16

The problem asks to determine the vertical displacement at point I (which I assume is at the top of ...

Structural MechanicsCastigliano's TheoremBeam BendingStrain EnergyDeflectionIntegration
2025/7/16

The problem asks to determine the vertical displacement at a point "I" (likely implied as the midpoi...

Structural MechanicsBeam DeflectionFlexural RigidityUniformly Distributed Load (UDL)ElasticityVirtual WorkCastigliano's Theorem
2025/7/16

The problem asks us to determine the vertical displacement at a point I (assumed to be a point withi...

Structural MechanicsFinite Element AnalysisVirtual WorkBending MomentDeflectionEngineering
2025/7/16

The problem describes a lottery win of $1,000,000 and presents several options for receiving the pri...

Financial MathematicsPresent ValueAnnuityPerpetuityDiscount Rate
2025/7/16

The problem consists of two parts: (a) An aircraft flies at different speeds and bearings for certai...

TrigonometryDifferentiationDistanceBearingAircraft Navigation
2025/7/15

The problem presents a line graph showing the distance of taxi driver Joe from his home over a 12-ho...

Graph InterpretationDistanceRate of ChangeReal-World Application
2025/7/15

The problem asks to solve a circuit using Kirchhoff's laws. The circuit consists of two voltage sour...

Circuit AnalysisKirchhoff's LawsThevenin's TheoremNorton's TheoremElectrical Engineering
2025/7/14