We need to solve the following expression: $2 \frac{6}{7} \times (\frac{3}{5} - \frac{1}{2}) + 2 \frac{3}{10} - \frac{4}{5}$

ArithmeticFractionsMixed NumbersArithmetic OperationsOrder of Operations
2025/5/25

1. Problem Description

We need to solve the following expression:
267×(3512)+2310452 \frac{6}{7} \times (\frac{3}{5} - \frac{1}{2}) + 2 \frac{3}{10} - \frac{4}{5}

2. Solution Steps

First, convert the mixed numbers to improper fractions:
267=2×7+67=14+67=2072 \frac{6}{7} = \frac{2 \times 7 + 6}{7} = \frac{14 + 6}{7} = \frac{20}{7}
2310=2×10+310=20+310=23102 \frac{3}{10} = \frac{2 \times 10 + 3}{10} = \frac{20 + 3}{10} = \frac{23}{10}
Now, substitute these into the expression:
207×(3512)+231045\frac{20}{7} \times (\frac{3}{5} - \frac{1}{2}) + \frac{23}{10} - \frac{4}{5}
Next, we need to evaluate the expression in parentheses. The least common denominator of 5 and 2 is
1

0. $\frac{3}{5} - \frac{1}{2} = \frac{3 \times 2}{5 \times 2} - \frac{1 \times 5}{2 \times 5} = \frac{6}{10} - \frac{5}{10} = \frac{6-5}{10} = \frac{1}{10}$

Substitute this result back into the expression:
207×110+231045\frac{20}{7} \times \frac{1}{10} + \frac{23}{10} - \frac{4}{5}
Multiply the first two fractions:
207×110=20×17×10=2070=27\frac{20}{7} \times \frac{1}{10} = \frac{20 \times 1}{7 \times 10} = \frac{20}{70} = \frac{2}{7}
Substitute this back into the expression:
27+231045\frac{2}{7} + \frac{23}{10} - \frac{4}{5}
Now we need to find a common denominator for the three fractions. The least common denominator of 7, 10, and 5 is
7

0. $\frac{2}{7} = \frac{2 \times 10}{7 \times 10} = \frac{20}{70}$

2310=23×710×7=16170\frac{23}{10} = \frac{23 \times 7}{10 \times 7} = \frac{161}{70}
45=4×145×14=5670\frac{4}{5} = \frac{4 \times 14}{5 \times 14} = \frac{56}{70}
Now substitute these into the expression:
2070+161705670=20+1615670=1815670=12570\frac{20}{70} + \frac{161}{70} - \frac{56}{70} = \frac{20 + 161 - 56}{70} = \frac{181 - 56}{70} = \frac{125}{70}
Simplify the fraction:
12570=5×255×14=2514\frac{125}{70} = \frac{5 \times 25}{5 \times 14} = \frac{25}{14}
Convert the improper fraction to a mixed number:
2514=11114\frac{25}{14} = 1 \frac{11}{14}

3. Final Answer

111141 \frac{11}{14}

Related problems in "Arithmetic"

The problem states that $n\%$ of $4869$ is a certain value. The goal is to find $n$. Since the other...

PercentageArithmetic Operations
2025/6/3

The problem is to evaluate the expression $3\frac{3}{4} \times (-1\frac{1}{5}) + 5\frac{1}{2}$.

FractionsMixed NumbersOrder of OperationsArithmetic Operations
2025/6/3

We need to evaluate the expression $1\frac{1}{5} \times [(-1\frac{1}{4}) + (-3\frac{3}{4})]$.

FractionsMixed NumbersOrder of OperationsArithmetic Operations
2025/6/3

We need to evaluate the expression $1\frac{3}{10} + \frac{1}{2} \times (-\frac{3}{5})$.

FractionsMixed NumbersArithmetic OperationsOrder of Operations
2025/6/3

The problem asks us to evaluate the expression $1\frac{1}{5} \times (-\frac{2}{3}) + 1\frac{1}{5}$.

FractionsMixed NumbersOrder of OperationsArithmetic Operations
2025/6/3

The problem is to evaluate the expression $-4 \times 3 - (-2)^3$.

Order of OperationsInteger Arithmetic
2025/6/3

We need to evaluate the expression $(-2)^3 \div (-3)^3 \times (-6)^2 \div 4^2$.

Order of OperationsExponentsFractionsSimplification
2025/6/1

The problem is to evaluate the expression $-3^2 - (-2)^3$.

Order of OperationsExponentsInteger Arithmetic
2025/6/1

We need to evaluate the expression $(-3\frac{2}{3}) \div 6\frac{7}{8} - \frac{1}{3}$.

FractionsMixed NumbersArithmetic Operations
2025/6/1

The problem is to evaluate the expression $(-36) \div (-9) - (-2) \times (-5)$.

Order of OperationsInteger ArithmeticDivisionMultiplicationSubtraction
2025/6/1