First, let's simplify the denominator of the second term on the left side.
x2+a2+b2−2ax−2bx+2ab=x2−2x(a+b)+(a2+2ab+b2)=x2−2x(a+b)+(a+b)2=(x−(a+b))2=(x−a−b)2. So the equation becomes:
(x−a−b)(x+a+b)1+(x−a−b)21=(x+a+b)22. Now, let's find a common denominator on the left side, which is (x−a−b)2(x+a+b). (x−a−b)2(x+a+b)x−a−b+(x−a−b)2(x+a+b)x+a+b=(x−a−b)2(x+a+b)x−a−b+x+a+b=(x−a−b)2(x+a+b)2x. So, we have:
(x−a−b)2(x+a+b)2x=(x+a+b)22. Cross-multiplying, we get:
2x(x+a+b)2=2(x−a−b)2(x+a+b). Dividing by 2,
x(x+a+b)2=(x−a−b)2(x+a+b). Assuming x+a+b=0, we can divide both sides by x+a+b. x(x+a+b)=(x−a−b)2. Expanding both sides:
x2+x(a+b)=x2−2x(a+b)+(a+b)2. x2+ax+bx=x2−2ax−2bx+a2+2ab+b2. ax+bx=−2ax−2bx+a2+2ab+b2. 3ax+3bx=a2+2ab+b2. 3x(a+b)=(a+b)2. Assuming a+b=0, we can divide both sides by a+b. x=3a+b. However, the equation (x−a−b)2(x+a+b)2x=(x+a+b)22 does not generally hold true. For the equation to be true for all x,a,b, it means that there is an error in the original problem or the equation given. The provided equation is:
(x−a−b)(x+a+b)1+x2+a2+b2−2ax−2bx+2ab1=(x+a+b)22 (x−a−b)(x+a+b)1+(x−a−b)21=(x+a+b)22. This is not an identity.