We are asked to verify the given equation: $\frac{x+a+b}{x-a-b} + \frac{x-a-b}{x+a+b} = \frac{2(x^2 - ax - bx + ab) + 3(a^2 + b^2)}{x^2 - a^2 - 2ab - b^2}$.

AlgebraAlgebraic ManipulationEquationsSimplificationIdentities
2025/5/25

1. Problem Description

We are asked to verify the given equation:
x+a+bxab+xabx+a+b=2(x2axbx+ab)+3(a2+b2)x2a22abb2\frac{x+a+b}{x-a-b} + \frac{x-a-b}{x+a+b} = \frac{2(x^2 - ax - bx + ab) + 3(a^2 + b^2)}{x^2 - a^2 - 2ab - b^2}.

2. Solution Steps

Let's simplify the left-hand side (LHS) of the equation:
LHS=x+a+bxab+xabx+a+bLHS = \frac{x+a+b}{x-a-b} + \frac{x-a-b}{x+a+b}
LHS=(x+a+b)2+(xab)2(xab)(x+a+b)LHS = \frac{(x+a+b)^2 + (x-a-b)^2}{(x-a-b)(x+a+b)}
Expanding the numerator and denominator:
LHS=x2+a2+b2+2ax+2bx+2ab+x2+a2+b22ax2bx+2abx2(a+b)2LHS = \frac{x^2 + a^2 + b^2 + 2ax + 2bx + 2ab + x^2 + a^2 + b^2 - 2ax - 2bx + 2ab}{x^2 - (a+b)^2}
LHS=2x2+2a2+2b2+4abx2(a2+2ab+b2)LHS = \frac{2x^2 + 2a^2 + 2b^2 + 4ab}{x^2 - (a^2 + 2ab + b^2)}
LHS=2(x2+a2+b2+2ab)x2a22abb2LHS = \frac{2(x^2 + a^2 + b^2 + 2ab)}{x^2 - a^2 - 2ab - b^2}
LHS=2(x2+(a+b)2)x2(a+b)2LHS = \frac{2(x^2 + (a+b)^2)}{x^2 - (a+b)^2}
Now let's simplify the right-hand side (RHS) of the equation:
RHS=2(x2axbx+ab)+3(a2+b2)x2a22abb2RHS = \frac{2(x^2 - ax - bx + ab) + 3(a^2 + b^2)}{x^2 - a^2 - 2ab - b^2}
RHS=2(x2a(xb)b(xa))+3(a2+b2)x2(a2+2ab+b2)RHS = \frac{2(x^2 - a(x-b) - b(x-a))+ 3(a^2 + b^2)}{x^2 - (a^2 + 2ab + b^2)}
RHS=2(x2axbx+ab)+3a2+3b2x2(a+b)2RHS = \frac{2(x^2 -ax - bx + ab) + 3a^2 + 3b^2}{x^2 - (a+b)^2}
RHS=2(x2x(a+b)+ab)+3(a2+b2)x2(a+b)2RHS = \frac{2(x^2 - x(a+b) + ab) + 3(a^2 + b^2)}{x^2 - (a+b)^2}
RHS=2x22ax2bx+2ab+3a2+3b2x2(a+b)2RHS = \frac{2x^2 - 2ax - 2bx + 2ab + 3a^2 + 3b^2}{x^2 - (a+b)^2}
Now, let us express the numerator as follows:
2x22ax2bx+2ab+3a2+3b2=2x2+2a2+2b2+4ab+a2+b22ax2bx2ab=2(x2+(a+b)2)+a2+b22ax2bx2ab2x^2 - 2ax - 2bx + 2ab + 3a^2 + 3b^2 = 2x^2 + 2a^2 + 2b^2 + 4ab + a^2 + b^2 - 2ax - 2bx -2ab = 2(x^2 + (a+b)^2) + a^2+b^2 - 2ax -2bx - 2ab
However, we cannot obtain the numerator as 2(x2+(a+b)2)2(x^2+(a+b)^2).
Consider the case when x=a+bx=a+b, then LHS=2(2(a+b)2)0LHS = \frac{2(2(a+b)^2)}{0} which is undefined.
Also, RHS=2((a+b)2a(a+b)b(a+b)+ab)+3(a2+b2)0=2(a2+b2+2aba2ababb2+ab)+3(a2+b2)0=2ab+3(a2+b2)0RHS = \frac{2((a+b)^2 - a(a+b) - b(a+b) + ab) + 3(a^2+b^2)}{0} = \frac{2(a^2+b^2+2ab - a^2 - ab -ab -b^2 + ab)+3(a^2+b^2)}{0} = \frac{2ab+3(a^2+b^2)}{0}. This expression is also undefined.
However, we cannot conclude whether the equation is true or false.
Expanding the RHS numerator, we have:
2x22ax2bx+2ab+3a2+3b2=2x2+2(a2+2ab+b2)=2x2+2a2+2b2+4ab2x^2 - 2ax - 2bx + 2ab + 3a^2 + 3b^2 = 2x^2 + 2(a^2 + 2ab + b^2) = 2x^2 + 2a^2 + 2b^2 + 4ab only if 2ax2bx+2ab+3a2+3b2=2a2+2b2+4ab-2ax -2bx+2ab+3a^2 + 3b^2 = 2a^2 + 2b^2 + 4ab
This simplifies to a2+b22ax2bx+2ab=0a^2+b^2-2ax-2bx +2ab = 0, i.e., (a+b)2=2x(a+b)(a+b)^2 = 2x(a+b), or a+b=2xa+b = 2x. In this case, the given equation holds. However, this must hold for all x,a,bx, a, b. Therefore, this is not an identity.
The given identity is false in general.

3. Final Answer

The given equation is false.

Related problems in "Algebra"

The general term of a sequence is given by $T_n = \frac{n(n+1)}{2}$. We need to find the value of $T...

Sequences and SeriesArithmetic SequencesFormula ApplicationEvaluation
2025/6/8

The problem asks us to add two complex numbers, $3-2i$ and $4+3i$, and then multiply the result by t...

Complex NumbersComplex Number ArithmeticImaginary Numbers
2025/6/8

Solve the inequality $2(5 - 3x) - 4x + 6 \ge 0$ for $x$.

InequalitiesLinear InequalitiesAlgebraic Manipulation
2025/6/8

The problem asks us to solve the quadratic equation $x^2 + 6x + 9 = 0$ by factorization and describe...

Quadratic EquationsFactorizationRoots of EquationsDiscriminant
2025/6/8

The problem asks to find the domain of the expression $\frac{x}{x+7}$. The domain is the set of all ...

DomainRational ExpressionsInequalities
2025/6/8

The question asks us to identify the type of function whose range consists of only one element. The ...

FunctionsRangeConstant FunctionOne-to-one FunctionOnto Function
2025/6/8

The problem asks us to solve two equations. The first equation is $-5(a-3) = -2a$ for $a$. The secon...

Linear EquationsSolving EquationsAlgebraic ManipulationFractions
2025/6/8

We are asked to factor the expression $x^3 - 27$.

FactoringDifference of CubesPolynomials
2025/6/8

The problem requires us to factor the expression $12x^3 - 5x^2 - 3x$.

Polynomial FactorizationQuadratic EquationsFactoring
2025/6/8

The problem is to factor the expression $xy + 3y + 2x + 6$.

FactoringAlgebraic ExpressionsGrouping
2025/6/8