The problem asks us to find the volume of the solid generated by rotating the region bounded by the curves $x+y=3$ and $x=4-(y-1)^2$ around the x-axis. Part (a) requires using the disk/washer method, and part (b) asks if the cylindrical shell method can be used and to calculate the volume if possible.

Applied MathematicsCalculusVolume of Solids of RevolutionDisk/Washer MethodCylindrical Shell MethodIntegration
2025/5/27

1. Problem Description

The problem asks us to find the volume of the solid generated by rotating the region bounded by the curves x+y=3x+y=3 and x=4(y1)2x=4-(y-1)^2 around the x-axis. Part (a) requires using the disk/washer method, and part (b) asks if the cylindrical shell method can be used and to calculate the volume if possible.

2. Solution Steps

(a) Disk/Washer Method
First, we need to find the intersection points of the two curves:
x=3yx = 3 - y
x=4(y1)2=4(y22y+1)=3+2yy2x = 4 - (y-1)^2 = 4 - (y^2 - 2y + 1) = 3 + 2y - y^2
Setting them equal:
3y=3+2yy23 - y = 3 + 2y - y^2
y23y=0y^2 - 3y = 0
y(y3)=0y(y - 3) = 0
So, y=0y = 0 or y=3y = 3.
When y=0y = 0, x=3x = 3. When y=3y = 3, x=0x = 0. The intersection points are (3,0)(3, 0) and (0,3)(0, 3).
Since we are rotating around the x-axis, we need to express xx in terms of yy. The outer radius will be given by the parabola x=4(y1)2x = 4 - (y-1)^2, and the inner radius will be given by the line x=3yx = 3 - y. We integrate with respect to yy from y=0y=0 to y=3y=3.
The volume using the washer method is:
V=πab(R(y)2r(y)2)dyV = \pi \int_{a}^{b} (R(y)^2 - r(y)^2) dy
where R(y)R(y) is the outer radius and r(y)r(y) is the inner radius.
In our case, R(y)=4(y1)2R(y) = 4 - (y-1)^2 and r(y)=3yr(y) = 3 - y, and the limits of integration are a=0a=0 and b=3b=3.
V=π03((4(y1)2)2(3y)2)dyV = \pi \int_{0}^{3} ((4 - (y-1)^2)^2 - (3-y)^2) dy
V=π03((4(y22y+1))2(96y+y2))dyV = \pi \int_{0}^{3} ((4 - (y^2 - 2y + 1))^2 - (9 - 6y + y^2)) dy
V=π03((3+2yy2)2(96y+y2))dyV = \pi \int_{0}^{3} ((3 + 2y - y^2)^2 - (9 - 6y + y^2)) dy
V=π03((9+4y2+y4+12y6y24y3)(96y+y2))dyV = \pi \int_{0}^{3} ( (9 + 4y^2 + y^4 + 12y - 6y^2 - 4y^3) - (9 - 6y + y^2) ) dy
V=π03(9+4y2+y4+12y6y24y39+6yy2)dyV = \pi \int_{0}^{3} (9 + 4y^2 + y^4 + 12y - 6y^2 - 4y^3 - 9 + 6y - y^2) dy
V=π03(y44y33y2+18y)dyV = \pi \int_{0}^{3} (y^4 - 4y^3 - 3y^2 + 18y) dy
V=π[y55y4y3+9y2]03V = \pi \left[ \frac{y^5}{5} - y^4 - y^3 + 9y^2 \right]_{0}^{3}
V=π(3553433+9(32))V = \pi \left( \frac{3^5}{5} - 3^4 - 3^3 + 9(3^2) \right)
V=π(24358127+81)V = \pi \left( \frac{243}{5} - 81 - 27 + 81 \right)
V=π(243527)V = \pi \left( \frac{243}{5} - 27 \right)
V=π(2431355)V = \pi \left( \frac{243 - 135}{5} \right)
V=π(1085)V = \pi \left( \frac{108}{5} \right)
V=108π5V = \frac{108\pi}{5}
(b) Cylindrical Shell Method
Yes, it is possible to use the cylindrical shell method.
We will integrate with respect to xx. The height of the cylindrical shell is given by the difference between the two y-values, y=3xy = 3-x and y=1+4xy = 1 + \sqrt{4-x}. We solve for yy in the quadratic equation, x=4(y1)2x = 4 - (y-1)^2, we get (y1)2=4x(y-1)^2 = 4-x, y1=±4xy-1 = \pm\sqrt{4-x}, y=1±4xy = 1 \pm \sqrt{4-x}. Since we want the upper portion of the curve, we use y=1+4xy=1+\sqrt{4-x}.
The limits of integration will be from x=0x=0 to x=3x=3.
The formula for the cylindrical shell method is:
V=2πabyf(x)dxV = 2\pi \int_{a}^{b} y f(x) dx
In this case, f(x)=(1+4x)(3x)f(x) = (1+\sqrt{4-x}) - (3-x). So,
V=2π03x((1+4x)(3x))dxV = 2\pi \int_{0}^{3} x((1+\sqrt{4-x}) - (3-x)) dx
V=2π03x(4x2+x)dxV = 2\pi \int_{0}^{3} x(\sqrt{4-x} - 2 + x) dx
V=2π03(x4x2x+x2)dxV = 2\pi \int_{0}^{3} (x\sqrt{4-x} - 2x + x^2) dx
Let u=4xu = 4-x, so x=4ux = 4-u and dx=dudx = -du.
When x=0x=0, u=4u=4. When x=3x=3, u=1u=1.
03x4xdx=41(4u)u(du)=14(4u)udu=14(4uu3/2)du\int_{0}^{3} x\sqrt{4-x} dx = \int_{4}^{1} (4-u)\sqrt{u} (-du) = \int_{1}^{4} (4-u)\sqrt{u} du = \int_{1}^{4} (4\sqrt{u} - u^{3/2}) du
=[423u3/225u5/2]14=[83u3/225u5/2]14= \left[ 4 \cdot \frac{2}{3} u^{3/2} - \frac{2}{5} u^{5/2} \right]_{1}^{4} = \left[ \frac{8}{3} u^{3/2} - \frac{2}{5} u^{5/2} \right]_{1}^{4}
=(83(4)3/225(4)5/2)(8325)=(8382532)(40615)=(643645)3415=320192153415=1283415=9415= (\frac{8}{3} (4)^{3/2} - \frac{2}{5} (4)^{5/2}) - (\frac{8}{3} - \frac{2}{5}) = (\frac{8}{3} \cdot 8 - \frac{2}{5} \cdot 32) - (\frac{40-6}{15}) = (\frac{64}{3} - \frac{64}{5}) - \frac{34}{15} = \frac{320-192}{15} - \frac{34}{15} = \frac{128 - 34}{15} = \frac{94}{15}.
032xdx=[x2]03=9\int_{0}^{3} -2x dx = [-x^2]_{0}^{3} = -9.
03x2dx=[x33]03=273=9\int_{0}^{3} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{3} = \frac{27}{3} = 9.
V=2π(94159+9)=2π(9415)=188π15V = 2\pi \left( \frac{94}{15} - 9 + 9 \right) = 2\pi \left(\frac{94}{15}\right) = \frac{188\pi}{15}.
Oops, my above answer to the cylindrical shell part is incorrect. I need to rework this.
The correct way to calculate it by cylindrical shells involves rotating about the xx-axis and integrating with respect to yy from 00 to 33.
V=2π03y(4(y1)2(3y))dy=2π03y(4(y22y+1)3+y)dy=2π03y(4y2+2y13+y)dyV = 2 \pi \int_0^3 y(4-(y-1)^2 - (3-y)) dy = 2 \pi \int_0^3 y(4-(y^2-2y+1)-3+y) dy = 2\pi \int_0^3 y(4-y^2+2y-1-3+y) dy
=2π03y(y2+3y)dy=2π03(y3+3y2)dy=2π[14y4+y3]03=2π(814+27)=2π(81+1084)=2π(274)=27π2= 2\pi \int_0^3 y(-y^2+3y)dy = 2\pi \int_0^3 (-y^3+3y^2)dy = 2\pi [ -\frac{1}{4}y^4 + y^3 ]_0^3 = 2\pi ( -\frac{81}{4} + 27 ) = 2\pi (\frac{-81+108}{4}) = 2\pi (\frac{27}{4}) = \frac{27\pi}{2}. This answer is still wrong.
Let's evaluate the disk method again to be sure.
V=π03((4(y1)2)2(3y)2)dy=π03(3+2yy2)2(3y)2dyV = \pi \int_{0}^{3} ((4 - (y-1)^2)^2 - (3-y)^2) dy = \pi \int_0^3 (3+2y-y^2)^2 - (3-y)^2 dy
=π03(9+4y2+y4+12y6y24y3)(96y+y2)dy=π03y44y33y2+18ydy= \pi \int_0^3 (9+4y^2+y^4+12y-6y^2-4y^3) - (9-6y+y^2)dy = \pi \int_0^3 y^4 - 4y^3 - 3y^2 + 18y dy
=π[y55y4y3+9y2]03=π(24358127+81)=π(2431355)=π(1085)= \pi [\frac{y^5}{5} - y^4 - y^3 + 9y^2]_0^3 = \pi (\frac{243}{5} - 81 - 27 + 81 ) = \pi (\frac{243-135}{5}) = \pi (\frac{108}{5}).
The correct cylindrical shell calculation:
V=2π03y(x2x1)dy=2π03y(4(y1)2(3y))dy=2π03y(4(y22y+1)3+y)dy=2π03y(4y2+2y13+y)dyV = 2\pi \int_0^3 y(x_2 - x_1) dy = 2\pi \int_0^3 y (4-(y-1)^2 - (3-y)) dy = 2\pi \int_0^3 y(4 - (y^2 - 2y + 1) - 3 + y) dy = 2\pi \int_0^3 y(4 - y^2 + 2y - 1 - 3 + y) dy
=2π03y(y2+3y)dy=2π03(y3+3y2)dy=2π[14y4+y3]03=2π[814+27]=2π[274]=27π2 = 2\pi \int_0^3 y(-y^2 + 3y) dy = 2\pi \int_0^3 (-y^3 + 3y^2) dy = 2\pi [ -\frac{1}{4}y^4 + y^3]_0^3 = 2\pi [ -\frac{81}{4} + 27 ] = 2\pi [\frac{27}{4}] = \frac{27\pi}{2}. There is some mistake still, this does not equal 108pi/
5.

3. Final Answer

(a) V=108π5V = \frac{108\pi}{5}
(b) Yes, the volume can be determined by the cylindrical shell method, however, I am unable to obtain the correct value using the cylindrical shell method in the limited time. It should still be 108π5\frac{108\pi}{5}.

Related problems in "Applied Mathematics"

The problem states that we have four stocks, a, b, c, and d, with betas of 0.6, 0.8, 1.5, and 0.7 re...

Financial MathematicsPortfolio BetaWeighted Average
2025/7/24

The problem consists of several incomplete sentences related to finance and investment. The task is ...

Financial MathematicsInvestmentRisk ManagementPortfolio TheoryStatistics
2025/7/24

We are given the risk-free rate, the beta of Stock A and Stock B, and the required return of Stock A...

Financial MathematicsCAPMExpected ReturnBetaRisk-free RateMarket Risk Premium
2025/7/24

The problem asks us to calculate the yield to maturity (YTM) of a bond. We are given the following i...

FinanceBondsYield to MaturityFinancial ModelingApproximation
2025/7/24

We need to solve 4 multiple choice questions (20-23) based on the provided financial terms.

AccountingFinancial StatementsAssetsLiabilitiesOwner's Equity
2025/7/24

A cylindrical container with small holes drilled vertically is filled with water, as shown in the fi...

Fluid DynamicsBernoulli's PrinciplePhysicsVelocityProjectile MotionDimensional Analysis
2025/7/22

The problem describes a scenario involving a container with water jets emanating from it at differen...

Fluid DynamicsTorricelli's TheoremProjectile MotionOptimizationPhysics
2025/7/22

A cylindrical tank has small holes drilled vertically along its side, as shown in the diagram. The t...

Fluid DynamicsBernoulli's EquationHydrostaticsPhysicsDimensional Analysis
2025/7/22

The problem is to solve the partial differential equation: $\frac{\partial^2 u}{\partial x^2} + \fra...

Partial Differential EquationsLaplace's EquationSeparation of VariablesBoundary ConditionsCalculus
2025/7/22

The problem requires using the Capital Asset Pricing Model (CAPM) to solve for different variables i...

FinanceCAPMFormula ApplicationPercentage Calculation
2025/7/22