We are asked to divide the polynomial $45x^4 - 9x^3 + 27x^2$ by the monomial $-9x$.

AlgebraPolynomial DivisionMonomialAlgebraic Manipulation
2025/3/25

1. Problem Description

We are asked to divide the polynomial 45x49x3+27x245x^4 - 9x^3 + 27x^2 by the monomial 9x-9x.

2. Solution Steps

To divide the polynomial by 9x-9x, we divide each term of the polynomial by 9x-9x.
45x49x3+27x29x=45x49x9x39x+27x29x\frac{45x^4 - 9x^3 + 27x^2}{-9x} = \frac{45x^4}{-9x} - \frac{9x^3}{-9x} + \frac{27x^2}{-9x}
Now, we simplify each term:
45x49x=5x41=5x3\frac{45x^4}{-9x} = -5x^{4-1} = -5x^3
9x39x=(1)x31=x2-\frac{9x^3}{-9x} = -(-1)x^{3-1} = x^2
27x29x=3x21=3x\frac{27x^2}{-9x} = -3x^{2-1} = -3x
Therefore,
45x49x3+27x29x=5x3+x23x\frac{45x^4 - 9x^3 + 27x^2}{-9x} = -5x^3 + x^2 - 3x

3. Final Answer

5x3+x23x-5x^3 + x^2 - 3x