We are asked to find the inverse function $f^{-1}(y)$ of the function $f(x) = \frac{1}{4}x - 11$.

AlgebraInverse FunctionsLinear Functions
2025/3/26

1. Problem Description

We are asked to find the inverse function f1(y)f^{-1}(y) of the function f(x)=14x11f(x) = \frac{1}{4}x - 11.

2. Solution Steps

To find the inverse function, we first replace f(x)f(x) with yy:
y=14x11y = \frac{1}{4}x - 11
Then we switch xx and yy:
x=14y11x = \frac{1}{4}y - 11
Next, we solve for yy:
x+11=14yx + 11 = \frac{1}{4}y
4(x+11)=y4(x + 11) = y
4x+44=y4x + 44 = y
So, y=4x+44y = 4x + 44.
Finally, we replace yy with f1(x)f^{-1}(x):
f1(x)=4x+44f^{-1}(x) = 4x + 44
Since we want f1(y)f^{-1}(y), we replace xx with yy:
f1(y)=4y+44f^{-1}(y) = 4y + 44

3. Final Answer

f1(y)=4y+44f^{-1}(y) = 4y + 44