The image presents a set of problems. We need to solve problem 4, which involves vector calculations. Given the vectors: $\vec{A} = -8\hat{k} - 17\hat{j}$ $\vec{B} = 620\hat{i} - 35\hat{k}$ $\vec{C} = -50\hat{i} + 43\hat{j} + 76\hat{k}$ We need to calculate: a) $\vec{C} \times \vec{A}$ b) $\vec{A} \times \vec{B} \cdot \vec{C}$ c) A vector of magnitude 60 in the direction of the resultant vector $\vec{A}+\vec{B}+\vec{C}$

GeometryVectorsCross ProductDot ProductVector AdditionVector Magnitude
2025/5/29

1. Problem Description

The image presents a set of problems. We need to solve problem 4, which involves vector calculations.
Given the vectors:
A=8k^17j^\vec{A} = -8\hat{k} - 17\hat{j}
B=620i^35k^\vec{B} = 620\hat{i} - 35\hat{k}
C=50i^+43j^+76k^\vec{C} = -50\hat{i} + 43\hat{j} + 76\hat{k}
We need to calculate:
a) C×A\vec{C} \times \vec{A}
b) A×BC\vec{A} \times \vec{B} \cdot \vec{C}
c) A vector of magnitude 60 in the direction of the resultant vector A+B+C\vec{A}+\vec{B}+\vec{C}

2. Solution Steps

a) C×A\vec{C} \times \vec{A}
C×A=i^j^k^5043760178=i^(43(8)76(17))j^((50)(8)76(0))+k^((50)(17)43(0))\vec{C} \times \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -50 & 43 & 76 \\ 0 & -17 & -8 \end{vmatrix} = \hat{i}(43(-8) - 76(-17)) - \hat{j}((-50)(-8) - 76(0)) + \hat{k}((-50)(-17) - 43(0))
=i^(344+1292)j^(4000)+k^(8500)=948i^400j^+850k^= \hat{i}(-344 + 1292) - \hat{j}(400 - 0) + \hat{k}(850 - 0) = 948\hat{i} - 400\hat{j} + 850\hat{k}
b) A×BC\vec{A} \times \vec{B} \cdot \vec{C}
First, calculate A×B\vec{A} \times \vec{B}:
A×B=i^j^k^0178620035=i^((17)(35)(8)(0))j^((0)(35)(8)(620))+k^((0)(0)(17)(620))\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -17 & -8 \\ 620 & 0 & -35 \end{vmatrix} = \hat{i}((-17)(-35) - (-8)(0)) - \hat{j}((0)(-35) - (-8)(620)) + \hat{k}((0)(0) - (-17)(620))
=i^(5950)j^(0+4960)+k^(0+10540)=595i^4960j^+10540k^= \hat{i}(595 - 0) - \hat{j}(0 + 4960) + \hat{k}(0 + 10540) = 595\hat{i} - 4960\hat{j} + 10540\hat{k}
Now, calculate the dot product (A×B)C(\vec{A} \times \vec{B}) \cdot \vec{C}:
(A×B)C=(595i^4960j^+10540k^)(50i^+43j^+76k^)(\vec{A} \times \vec{B}) \cdot \vec{C} = (595\hat{i} - 4960\hat{j} + 10540\hat{k}) \cdot (-50\hat{i} + 43\hat{j} + 76\hat{k})
=(595)(50)+(4960)(43)+(10540)(76)=29750213280+801040=558010= (595)(-50) + (-4960)(43) + (10540)(76) = -29750 - 213280 + 801040 = 558010
c) A vector of magnitude 60 in the direction of the resultant vector A+B+C\vec{A}+\vec{B}+\vec{C}
First, calculate A+B+C\vec{A} + \vec{B} + \vec{C}:
A+B+C=(0i^17j^8k^)+(620i^+0j^35k^)+(50i^+43j^+76k^)\vec{A} + \vec{B} + \vec{C} = (0\hat{i} - 17\hat{j} - 8\hat{k}) + (620\hat{i} + 0\hat{j} - 35\hat{k}) + (-50\hat{i} + 43\hat{j} + 76\hat{k})
=(0+62050)i^+(17+0+43)j^+(835+76)k^=570i^+26j^+33k^= (0 + 620 - 50)\hat{i} + (-17 + 0 + 43)\hat{j} + (-8 - 35 + 76)\hat{k} = 570\hat{i} + 26\hat{j} + 33\hat{k}
The magnitude of the resultant vector R\vec{R} is R=(570)2+(26)2+(33)2=324900+676+1089=326665571.546|\vec{R}| = \sqrt{(570)^2 + (26)^2 + (33)^2} = \sqrt{324900 + 676 + 1089} = \sqrt{326665} \approx 571.546
The unit vector in the direction of R\vec{R} is u^=RR=570i^+26j^+33k^571.5460.997i^+0.045j^+0.058k^\hat{u} = \frac{\vec{R}}{|\vec{R}|} = \frac{570\hat{i} + 26\hat{j} + 33\hat{k}}{571.546} \approx 0.997\hat{i} + 0.045\hat{j} + 0.058\hat{k}
The vector with magnitude 60 in the direction of R\vec{R} is 60u^=60(0.997i^+0.045j^+0.058k^)59.82i^+2.7j^+3.48k^60\hat{u} = 60(0.997\hat{i} + 0.045\hat{j} + 0.058\hat{k}) \approx 59.82\hat{i} + 2.7\hat{j} + 3.48\hat{k}

3. Final Answer

a) C×A=948i^400j^+850k^\vec{C} \times \vec{A} = 948\hat{i} - 400\hat{j} + 850\hat{k}
b) A×BC=558010\vec{A} \times \vec{B} \cdot \vec{C} = 558010
c) 59.82i^+2.7j^+3.48k^59.82\hat{i} + 2.7\hat{j} + 3.48\hat{k}

Related problems in "Geometry"

The problem states that the area of triangle OFC is $33 \text{ cm}^2$. We need to find the area of t...

AreaTrianglesSimilar TrianglesRatio and Proportion
2025/6/6

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3