We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx$.

AnalysisMultiple IntegralsTriple IntegralIntegration
2025/5/29

1. Problem Description

We are asked to evaluate the triple integral 0log20x0x+yex+y+zdzdydx\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx.

2. Solution Steps

First, we evaluate the innermost integral with respect to zz:
0x+yex+y+zdz=ex+y0x+yezdz=ex+y[ez]0x+y=ex+y(ex+ye0)=ex+y(ex+y1)=e2(x+y)ex+y\int_{0}^{x+y} e^{x+y+z} dz = e^{x+y} \int_{0}^{x+y} e^{z} dz = e^{x+y} [e^{z}]_{0}^{x+y} = e^{x+y} (e^{x+y} - e^{0}) = e^{x+y} (e^{x+y} - 1) = e^{2(x+y)} - e^{x+y}.
Next, we evaluate the integral with respect to yy:
0x(e2(x+y)ex+y)dy=0xe2x+2ydy0xex+ydy=e2x0xe2ydyex0xeydy=e2x[12e2y]0xex[ey]0x=e2x(12e2x12e0)ex(exe0)=12e4x12e2xe2x+ex=12e4x32e2x+ex\int_{0}^{x} (e^{2(x+y)} - e^{x+y}) dy = \int_{0}^{x} e^{2x+2y} dy - \int_{0}^{x} e^{x+y} dy = e^{2x} \int_{0}^{x} e^{2y} dy - e^{x} \int_{0}^{x} e^{y} dy = e^{2x} [\frac{1}{2}e^{2y}]_{0}^{x} - e^{x} [e^{y}]_{0}^{x} = e^{2x} (\frac{1}{2}e^{2x} - \frac{1}{2}e^{0}) - e^{x} (e^{x} - e^{0}) = \frac{1}{2} e^{4x} - \frac{1}{2}e^{2x} - e^{2x} + e^{x} = \frac{1}{2} e^{4x} - \frac{3}{2}e^{2x} + e^{x}.
Finally, we evaluate the integral with respect to xx:
0log2(12e4x32e2x+ex)dx=120log2e4xdx320log2e2xdx+0log2exdx=12[14e4x]0log232[12e2x]0log2+[ex]0log2=18(e4log2e0)34(e2log2e0)+(elog2e0)=18(elog241)34(elog221)+(21)=18(161)34(41)+1=15894+1=158188+88=1518+88=58\int_{0}^{\log 2} (\frac{1}{2} e^{4x} - \frac{3}{2}e^{2x} + e^{x}) dx = \frac{1}{2} \int_{0}^{\log 2} e^{4x} dx - \frac{3}{2} \int_{0}^{\log 2} e^{2x} dx + \int_{0}^{\log 2} e^{x} dx = \frac{1}{2} [\frac{1}{4}e^{4x}]_{0}^{\log 2} - \frac{3}{2} [\frac{1}{2}e^{2x}]_{0}^{\log 2} + [e^{x}]_{0}^{\log 2} = \frac{1}{8} (e^{4\log 2} - e^{0}) - \frac{3}{4} (e^{2\log 2} - e^{0}) + (e^{\log 2} - e^{0}) = \frac{1}{8} (e^{\log 2^4} - 1) - \frac{3}{4} (e^{\log 2^2} - 1) + (2 - 1) = \frac{1}{8} (16 - 1) - \frac{3}{4} (4 - 1) + 1 = \frac{15}{8} - \frac{9}{4} + 1 = \frac{15}{8} - \frac{18}{8} + \frac{8}{8} = \frac{15 - 18 + 8}{8} = \frac{5}{8}.

3. Final Answer

5/8

Related problems in "Analysis"

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29

We need to find the limit of the expression $\frac{2x^3 - 2x + 1}{x^2 + 4x - 5}$ as $x$ approaches $...

LimitsCalculusRational FunctionsPolynomial DivisionOne-sided Limits
2025/5/29

The problem is to solve the equation $\sin(x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$ for $x$.

TrigonometryTrigonometric EquationsSine FunctionPeriodicity
2025/5/29

We are asked to evaluate the limit: $\lim_{x \to +\infty} \frac{(2x-1)^3(x+2)^5}{x^8-1}$

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the function $\frac{(2x-1)^3(x+2)^5}{x^8-1}$ as $x$ approaches inf...

LimitsFunctionsAsymptotic Analysis
2025/5/29