The problem asks to compute the matrix product $CD$, where $C = \begin{bmatrix} 9 & 0 & 4 \\ 1 & 13 & -1 \\ 9 & 0 & 4 \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 4 & -8 \\ -1 & -1 & 2 \\ -9 & -9 & 18 \end{bmatrix}$.

AlgebraMatrix MultiplicationLinear Algebra
2025/3/8

1. Problem Description

The problem asks to compute the matrix product CDCD, where C=[9041131904]C = \begin{bmatrix} 9 & 0 & 4 \\ 1 & 13 & -1 \\ 9 & 0 & 4 \end{bmatrix} and D=[4481129918]D = \begin{bmatrix} 4 & 4 & -8 \\ -1 & -1 & 2 \\ -9 & -9 & 18 \end{bmatrix}.

2. Solution Steps

To compute the matrix product CDCD, we multiply each row of CC by each column of DD.
First row of CC times first column of DD: (9)(4)+(0)(1)+(4)(9)=36+036=0(9)(4) + (0)(-1) + (4)(-9) = 36 + 0 - 36 = 0.
First row of CC times second column of DD: (9)(4)+(0)(1)+(4)(9)=36+036=0(9)(4) + (0)(-1) + (4)(-9) = 36 + 0 - 36 = 0.
First row of CC times third column of DD: (9)(8)+(0)(2)+(4)(18)=72+0+72=0(9)(-8) + (0)(2) + (4)(18) = -72 + 0 + 72 = 0.
Second row of CC times first column of DD: (1)(4)+(13)(1)+(1)(9)=413+9=0(1)(4) + (13)(-1) + (-1)(-9) = 4 - 13 + 9 = 0.
Second row of CC times second column of DD: (1)(4)+(13)(1)+(1)(9)=413+9=0(1)(4) + (13)(-1) + (-1)(-9) = 4 - 13 + 9 = 0.
Second row of CC times third column of DD: (1)(8)+(13)(2)+(1)(18)=8+2618=0(1)(-8) + (13)(2) + (-1)(18) = -8 + 26 - 18 = 0.
Third row of CC times first column of DD: (9)(4)+(0)(1)+(4)(9)=36+036=0(9)(4) + (0)(-1) + (4)(-9) = 36 + 0 - 36 = 0.
Third row of CC times second column of DD: (9)(4)+(0)(1)+(4)(9)=36+036=0(9)(4) + (0)(-1) + (4)(-9) = 36 + 0 - 36 = 0.
Third row of CC times third column of DD: (9)(8)+(0)(2)+(4)(18)=72+0+72=0(9)(-8) + (0)(2) + (4)(18) = -72 + 0 + 72 = 0.
Therefore, the matrix CDCD is [000000000]\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.

3. Final Answer

[000000000]\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12