The angle bisectors of triangle $ABC$ intersect the circumcircle of triangle $ABC$ at points $X, Y, Z$. If $\alpha, \beta, \gamma$ are the angles of triangle $ABC$, we want to prove that the angles of triangle $XYZ$ are $90^{\circ} - \frac{\alpha}{2}$, $90^{\circ} - \frac{\beta}{2}$, and $90^{\circ} - \frac{\gamma}{2}$.

GeometryTriangle GeometryAngle BisectorsCircumcircleInscribed Angles
2025/3/27

1. Problem Description

The angle bisectors of triangle ABCABC intersect the circumcircle of triangle ABCABC at points X,Y,ZX, Y, Z. If α,β,γ\alpha, \beta, \gamma are the angles of triangle ABCABC, we want to prove that the angles of triangle XYZXYZ are 90α290^{\circ} - \frac{\alpha}{2}, 90β290^{\circ} - \frac{\beta}{2}, and 90γ290^{\circ} - \frac{\gamma}{2}.

2. Solution Steps

Let OO be the center of the circumcircle of triangle ABCABC. Let X,Y,ZX, Y, Z be the points where the angle bisectors of angles A,B,CA, B, C intersect the circumcircle, respectively. We are given that BAC=α\angle BAC = \alpha, ABC=β\angle ABC = \beta, and ACB=γ\angle ACB = \gamma. Since AXAX is the angle bisector of angle AA, we have BAX=CAX=α2\angle BAX = \angle CAX = \frac{\alpha}{2}.
Since angles subtended by the same arc are equal, we have BCX=BAX=α2\angle BCX = \angle BAX = \frac{\alpha}{2} and CBX=CAX=α2\angle CBX = \angle CAX = \frac{\alpha}{2}.
The measure of arc BXBX is equal to twice the measure of the inscribed angle BCX\angle BCX. Thus, arc BX=2α2=αBX = 2 \cdot \frac{\alpha}{2} = \alpha. Similarly, arc CX=2α2=αCX = 2 \cdot \frac{\alpha}{2} = \alpha.
Since BYBY is the angle bisector of angle BB, we have ABY=CBY=β2\angle ABY = \angle CBY = \frac{\beta}{2}. Then arc AY=2β2=βAY = 2 \cdot \frac{\beta}{2} = \beta and arc CY=2β2=βCY = 2 \cdot \frac{\beta}{2} = \beta.
Since CZCZ is the angle bisector of angle CC, we have ACZ=BCZ=γ2\angle ACZ = \angle BCZ = \frac{\gamma}{2}. Then arc AZ=2γ2=γAZ = 2 \cdot \frac{\gamma}{2} = \gamma and arc BZ=2γ2=γBZ = 2 \cdot \frac{\gamma}{2} = \gamma.
Now consider the arcs that form the circumcircle: BX=CX=αBX = CX = \alpha, AY=CY=βAY = CY = \beta, and AZ=BZ=γAZ = BZ = \gamma.
Arc YZ=arcYC+arcCZ=β+γYZ = arc YC + arc CZ = \beta + \gamma.
Then YXZ=12arcYZ=12(β+γ)\angle YXZ = \frac{1}{2} arc YZ = \frac{1}{2} (\beta + \gamma). Since α+β+γ=180\alpha + \beta + \gamma = 180^{\circ}, we have β+γ=180α\beta + \gamma = 180^{\circ} - \alpha. Thus, YXZ=12(180α)=90α2\angle YXZ = \frac{1}{2} (180^{\circ} - \alpha) = 90^{\circ} - \frac{\alpha}{2}.
Similarly, arc XZ=arcXC+arcCZ=α+γXZ = arc XC + arc CZ = \alpha + \gamma.
Then XYZ=12arcXZ=12(α+γ)\angle XYZ = \frac{1}{2} arc XZ = \frac{1}{2} (\alpha + \gamma). Since α+β+γ=180\alpha + \beta + \gamma = 180^{\circ}, we have α+γ=180β\alpha + \gamma = 180^{\circ} - \beta. Thus, XYZ=12(180β)=90β2\angle XYZ = \frac{1}{2} (180^{\circ} - \beta) = 90^{\circ} - \frac{\beta}{2}.
Finally, arc XY=arcXA+arcAY=arcXB+arcAY=α+βXY = arc XA + arc AY = arc XB + arc AY = \alpha + \beta.
Then XZY=12arcXY=12(α+β)\angle XZY = \frac{1}{2} arc XY = \frac{1}{2} (\alpha + \beta). Since α+β+γ=180\alpha + \beta + \gamma = 180^{\circ}, we have α+β=180γ\alpha + \beta = 180^{\circ} - \gamma. Thus, XZY=12(180γ)=90γ2\angle XZY = \frac{1}{2} (180^{\circ} - \gamma) = 90^{\circ} - \frac{\gamma}{2}.

3. Final Answer

The angles of triangle XYZXYZ are 90α290^{\circ} - \frac{\alpha}{2}, 90β290^{\circ} - \frac{\beta}{2}, and 90γ290^{\circ} - \frac{\gamma}{2}.

Related problems in "Geometry"

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11