Let $A_1, B_1, C_1$ be the midpoints of the sides $BC, CA, AB$ of triangle $ABC$ respectively. Let $M$ be an arbitrary point in the plane of the triangle. Prove that $\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}$.

GeometryVectorsTriangle GeometryMidpoint
2025/3/27

1. Problem Description

Let A1,B1,C1A_1, B_1, C_1 be the midpoints of the sides BC,CA,ABBC, CA, AB of triangle ABCABC respectively. Let MM be an arbitrary point in the plane of the triangle. Prove that MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

2. Solution Steps

Since A1A_1 is the midpoint of BCBC, we have
MA1=12(MB+MC)\vec{MA_1} = \frac{1}{2}(\vec{MB} + \vec{MC}).
Similarly, since B1B_1 is the midpoint of CACA, we have
MB1=12(MC+MA)\vec{MB_1} = \frac{1}{2}(\vec{MC} + \vec{MA}).
And since C1C_1 is the midpoint of ABAB, we have
MC1=12(MA+MB)\vec{MC_1} = \frac{1}{2}(\vec{MA} + \vec{MB}).
Adding these three equations, we get:
MA1+MB1+MC1=12(MB+MC)+12(MC+MA)+12(MA+MB)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(\vec{MB} + \vec{MC}) + \frac{1}{2}(\vec{MC} + \vec{MA}) + \frac{1}{2}(\vec{MA} + \vec{MB})
MA1+MB1+MC1=12MB+12MC+12MC+12MA+12MA+12MB\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}\vec{MB} + \frac{1}{2}\vec{MC} + \frac{1}{2}\vec{MC} + \frac{1}{2}\vec{MA} + \frac{1}{2}\vec{MA} + \frac{1}{2}\vec{MB}
MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

3. Final Answer

MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

Related problems in "Geometry"

The problem states that the area of triangle OFC is $33 \text{ cm}^2$. We need to find the area of t...

AreaTrianglesSimilar TrianglesRatio and Proportion
2025/6/6

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3