Given the vectors $\vec{OM} = (3, 1)$ and $\vec{ON} = (-5, -1)$, find the vector $\frac{1}{2}\vec{MN}$.

GeometryVectorsVector OperationsCoordinate Geometry
2025/3/27

1. Problem Description

Given the vectors OM=(3,1)\vec{OM} = (3, 1) and ON=(5,1)\vec{ON} = (-5, -1), find the vector 12MN\frac{1}{2}\vec{MN}.

2. Solution Steps

First, we need to find the vector MN\vec{MN}. The vector MN\vec{MN} can be expressed as ONOM\vec{ON} - \vec{OM}.
MN=ONOM\vec{MN} = \vec{ON} - \vec{OM}
Substituting the given vectors, we have
MN=(5,1)(3,1)\vec{MN} = (-5, -1) - (3, 1)
MN=(53,11)\vec{MN} = (-5 - 3, -1 - 1)
MN=(8,2)\vec{MN} = (-8, -2)
Now, we need to find 12MN\frac{1}{2}\vec{MN}.
12MN=12(8,2)\frac{1}{2}\vec{MN} = \frac{1}{2}(-8, -2)
12MN=(12×8,12×2)\frac{1}{2}\vec{MN} = (\frac{1}{2} \times -8, \frac{1}{2} \times -2)
12MN=(4,1)\frac{1}{2}\vec{MN} = (-4, -1)

3. Final Answer

12MN=(4,1)\frac{1}{2}\vec{MN} = (-4, -1)

Related problems in "Geometry"

The problem asks to find the symmetric equations of the tangent line to the curve given by the vecto...

Vector CalculusTangent LinesParametric EquationsSymmetric Equations3D Geometry
2025/4/13

The problem asks us to find the equation of a plane that contains two given parallel lines. The para...

Plane GeometryVectorsCross ProductParametric EquationsLines in 3DEquation of a Plane
2025/4/13

The problem asks to find the symmetric equations of the line of intersection of two given planes. Th...

LinesPlanesVector AlgebraCross ProductLinear Equations
2025/4/13

The problem requires us to write an algorithm (in pseudocode) that calculates the area of a circle. ...

AreaCircleAlgorithmPseudocode
2025/4/13

The problem asks us to find the parametric and symmetric equations of a line that passes through a g...

Lines in 3DParametric EquationsSymmetric EquationsVectors
2025/4/13

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11