The diagonals of a rhombus $ABCD$ are $\vec{AC}$ and $\vec{BD}$, and they intersect at point $O$. Express the vectors that coincide with the sides of the rhombus in terms of the vectors $\vec{AC}$ and $\vec{BD}$.

GeometryVectorsGeometryRhombusVector AdditionVector Subtraction
2025/3/27

1. Problem Description

The diagonals of a rhombus ABCDABCD are AC\vec{AC} and BD\vec{BD}, and they intersect at point OO. Express the vectors that coincide with the sides of the rhombus in terms of the vectors AC\vec{AC} and BD\vec{BD}.

2. Solution Steps

Let ABCDABCD be the rhombus. The diagonals are AC\vec{AC} and BD\vec{BD}, and they intersect at point OO. We want to express the vectors AB\vec{AB}, BC\vec{BC}, CD\vec{CD}, and DA\vec{DA} in terms of AC\vec{AC} and BD\vec{BD}.
Since the diagonals of a rhombus bisect each other at right angles, we have:
AO=12AC\vec{AO} = \frac{1}{2}\vec{AC}
OC=AO=12AC\vec{OC} = -\vec{AO} = \frac{1}{2}\vec{AC}
BO=12BD\vec{BO} = \frac{1}{2}\vec{BD}
OD=BO=12BD\vec{OD} = -\vec{BO} = \frac{1}{2}\vec{BD}
Now, we can express the side vectors as follows:
AB=AO+OB=OBOA=12AC+12BD=12(BDAC)\vec{AB} = \vec{AO} + \vec{OB} = \vec{OB} - \vec{OA} = -\frac{1}{2}\vec{AC} + \frac{1}{2}\vec{BD} = \frac{1}{2}(\vec{BD} - \vec{AC})
BC=BO+OC=12BD+12AC=12(ACBD)\vec{BC} = \vec{BO} + \vec{OC} = -\frac{1}{2}\vec{BD} + \frac{1}{2}\vec{AC} = \frac{1}{2}(\vec{AC} - \vec{BD})
CD=CO+OD=12AC12BD=12(AC+BD)\vec{CD} = \vec{CO} + \vec{OD} = -\frac{1}{2}\vec{AC} - \frac{1}{2}\vec{BD} = -\frac{1}{2}(\vec{AC} + \vec{BD})
DA=DO+OA=12BD+12AC=12(AC+BD)\vec{DA} = \vec{DO} + \vec{OA} = \frac{1}{2}\vec{BD} + \frac{1}{2}\vec{AC} = \frac{1}{2}(\vec{AC} + \vec{BD})

3. Final Answer

AB=12(BDAC)\vec{AB} = \frac{1}{2}(\vec{BD} - \vec{AC})
BC=12(ACBD)\vec{BC} = \frac{1}{2}(\vec{AC} - \vec{BD})
CD=12(AC+BD)\vec{CD} = -\frac{1}{2}(\vec{AC} + \vec{BD})
DA=12(AC+BD)\vec{DA} = \frac{1}{2}(\vec{AC} + \vec{BD})

Related problems in "Geometry"

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3

In the given diagram, we are given that $∠PMQ = 34°$ and $∠NQM = 28°$. We need to find the measure o...

AnglesCirclesCyclic QuadrilateralsTriangles
2025/6/3