Given a regular hexagon $ABCDEF$, and $\vec{AB} = p$ and $\vec{BC} = q$, we need to find the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $p$ and $q$.

GeometryVectorsGeometryHexagonVector AdditionVector Subtraction
2025/3/27

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, and AB=p\vec{AB} = p and BC=q\vec{BC} = q, we need to find the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of pp and qq.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, all sides have the same length, and the interior angles are 120120^\circ. Also, opposite sides are parallel.
CD\vec{CD} : Since ABCDEFABCDEF is a regular hexagon, CD\vec{CD} is parallel to BA\vec{BA}, so CD=AB=p\vec{CD} = - \vec{AB} = -p.
DE\vec{DE} : DE\vec{DE} is parallel to CB\vec{CB}, thus DE=BC=q\vec{DE} = - \vec{BC} = -q.
EF\vec{EF} : EF\vec{EF} is parallel to AB\vec{AB}. Also, EF=ABEF = AB. Thus, EF=AB=p\vec{EF} = \vec{AB} = p.
FA\vec{FA} : FA\vec{FA} is parallel to BC\vec{BC}. Also FA=BCFA = BC. Thus, FA=BC=q\vec{FA} = \vec{BC} = q.
AD\vec{AD} : We have AD=AB+BC+CD=p+qp=q+(q)=2q+(pp)\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = p + q - p = q + (q) = 2q + (p - p). Thus AD=AB+BC+CD=p+qp=q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = p + q - p = q. However, AD=2BCcos(30)AD = 2 BC \cos(30^\circ). Because the opposite sides of the hexagon are parallel, and ADAD is parallel to BCBC. AD=BC+AE\vec{AD} = \vec{BC} + \vec{AE}. We know AE=2p+2qpqAE = 2 p + 2q - p -q. Thus AD=AB+BC+CD=p+q+(p)=p+qp=q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = p + q + (-p) = p + q - p = q. Also since ABCDEFABCDEF is a regular hexagon AD=2BC=2q\vec{AD} = 2\vec{BC} = 2q.
AD=AB+BD=AB+(BC+CD)=p+(qp)=q\vec{AD} = \vec{AB} + \vec{BD} = \vec{AB} + (\vec{BC} + \vec{CD}) = p + (q - p) = q. This is incorrect.
Alternatively:
AD=AF+FE+ED\vec{AD} = \vec{AF} + \vec{FE} + \vec{ED}. AF=FA=q\vec{AF} = -\vec{FA} = -q. FE=EF=p\vec{FE} = -\vec{EF} = -p. ED=DE=q\vec{ED} = -\vec{DE} = q. Then AD=qp+q=pq+q=p\vec{AD} = -q - p + q = -p - q + q = -p. It has to be AD=AB+BC+CD\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD}. Also CD=p\vec{CD} = -p. Thus AD=p+qp=q\vec{AD} = p + q - p = q. Then AD\vec{AD} cannot be perpendicular to vector AB\vec{AB}. The vector should be twice the vector BC\vec{BC} and also parallel to this vector. So we can confirm that AD=2BC=2q\vec{AD} = 2 \vec{BC} = 2q.
EA\vec{EA}: EA=AE=(AD+DE)=(2qq)=qp\vec{EA} = - \vec{AE} = - (\vec{AD} + \vec{DE}) = - (2q - q) = -q -p.
Note that EA=AE\vec{EA} = - \vec{AE}. We know AE=AB+BE=AB+BC+CE\vec{AE} = \vec{AB} + \vec{BE} = \vec{AB} + \vec{BC} + \vec{CE}. Also CE=2BA=2AB=2p\vec{CE} = 2 \vec{BA} = -2 \vec{AB} = -2p. Therefore AE=p+q2p=qp\vec{AE} = p + q - 2p = q - p. Thus EA=q+p=pq\vec{EA} = -q + p = p - q.
AC\vec{AC} : AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = p + q.

3. Final Answer

CD=p\vec{CD} = -p
DE=q\vec{DE} = -q
EF=p\vec{EF} = p
FA=q\vec{FA} = q
AD=2q\vec{AD} = 2q
EA=pq\vec{EA} = p - q
AC=p+q\vec{AC} = p + q

Related problems in "Geometry"

In the diagram, $|VZ|=|YZ|$, $\angle YXZ = 20^{\circ}$ and $\angle ZVY = 52^{\circ}$. We need to cal...

GeometryAnglesTrianglesCyclic QuadrilateralsIsosceles Triangle
2025/4/10

We are given a circle $RST$ with tangent $PQ$ at point $S$. $PRT$ is a straight line. We are given t...

CirclesTangentsAnglesAlternate Segment TheoremTriangles
2025/4/10

Part (a): Find the height of a building, given the angle of depression from the top of the building ...

TrigonometryAngle of DepressionArea of TriangleArea of TrapeziumParallel Lines
2025/4/10

ABCD are points on the circumference of a circle with center O. PD is a tangent to the circle at D. ...

Circle TheoremsAnglesTangentsGeometry
2025/4/9

In the given circle, $A, B, C, D$ are points on the circumference and $O$ is the center (although th...

CirclesCyclic QuadrilateralsTangentsAnglesTangent-Chord Theorem
2025/4/9

In the given diagram, $ABCD$ are points on the circumference of a circle with center $O$. $PD$ is a ...

CirclesAnglesTangentsCyclic QuadrilateralsGeometry
2025/4/9

ABCD are points on the circumference of a circle with center O. PD is a tangent to the circle at poi...

CirclesAnglesCyclic QuadrilateralsTangents
2025/4/9

ABCD are points on the circumference of a circle with center O. PD is a tangent to the circle at D. ...

CirclesAnglesCyclic QuadrilateralsTangentsGeometry
2025/4/9

ABCD are points on the circumference of a circle, with center O. PD is a tangent at D. Angle $ADB = ...

CirclesAnglesTangentsCyclic QuadrilateralsGeometry
2025/4/9

ABCD are points on the circumference of a circle, center O. PD is a tangent at D. Given that angle A...

Circle TheoremsAnglesTangentsGeometry
2025/4/9