The problem requires completing a truth table for the logical expression $(P \land Q) \rightarrow (Q \lor R)$. We are given columns for $P$, $Q$, $R$, $P \land Q$, $Q \lor R$, and $P \lor \neg R$. We need to fill in the missing values for each row.

Discrete MathematicsLogicTruth TablesPropositional LogicLogical Operators
2025/6/7

1. Problem Description

The problem requires completing a truth table for the logical expression (PQ)(QR)(P \land Q) \rightarrow (Q \lor R). We are given columns for PP, QQ, RR, PQP \land Q, QRQ \lor R, and P¬RP \lor \neg R. We need to fill in the missing values for each row.

2. Solution Steps

First, let's compute the values for PQP \land Q. The conjunction PQP \land Q is true only if both PP and QQ are true.
- Row 1: TT=TT \land T = T
- Row 2: TT=TT \land T = T
- Row 3: TF=FT \land F = F
- Row 4: TF=FT \land F = F
- Row 5: FT=FF \land T = F
- Row 6: FT=FF \land T = F
- Row 7: FF=FF \land F = F
- Row 8: FF=FF \land F = F
Next, let's compute the values for QRQ \lor R. The disjunction QRQ \lor R is true if either QQ or RR (or both) are true.
- Row 1: TT=TT \lor T = T
- Row 2: TF=TT \lor F = T
- Row 3: FT=TF \lor T = T
- Row 4: FF=FF \lor F = F
- Row 5: TT=TT \lor T = T
- Row 6: TF=TT \lor F = T
- Row 7: FT=TF \lor T = T
- Row 8: FF=FF \lor F = F
Now, let's compute the values for P¬RP \lor \neg R. First, we need to find ¬R\neg R. ¬R\neg R is the negation of RR.
- Row 1: ¬T=F\neg T = F
- Row 2: ¬F=T\neg F = T
- Row 3: ¬T=F\neg T = F
- Row 4: ¬F=T\neg F = T
- Row 5: ¬T=F\neg T = F
- Row 6: ¬F=T\neg F = T
- Row 7: ¬T=F\neg T = F
- Row 8: ¬F=T\neg F = T
Now, we can find P¬RP \lor \neg R. The disjunction P¬RP \lor \neg R is true if either PP or ¬R\neg R (or both) are true.
- Row 1: TF=TT \lor F = T
- Row 2: TT=TT \lor T = T
- Row 3: TF=TT \lor F = T
- Row 4: TT=TT \lor T = T
- Row 5: FF=FF \lor F = F
- Row 6: FT=TF \lor T = T
- Row 7: FF=FF \lor F = F
- Row 8: FT=TF \lor T = T
Finally, we compute the values for (PQ)(QR)(P \land Q) \rightarrow (Q \lor R). The implication ABA \rightarrow B is false only if AA is true and BB is false. Otherwise, it is true.
- Row 1: TT=TT \rightarrow T = T
- Row 2: TT=TT \rightarrow T = T
- Row 3: FT=TF \rightarrow T = T
- Row 4: FF=TF \rightarrow F = T
- Row 5: FT=TF \rightarrow T = T
- Row 6: FT=TF \rightarrow T = T
- Row 7: FT=TF \rightarrow T = T
- Row 8: FF=TF \rightarrow F = T

3. Final Answer

Here's the completed truth table:
| P | Q | R | P ∧ Q | Q ∨ R | P ∨ ¬R | (P ∧ Q) → (Q ∨ R) |
|---|---|---|-------|-------|-------|-----------------------|
| T | T | T | T | T | T | T |
| T | T | F | T | T | T | T |
| T | F | T | F | T | T | T |
| T | F | F | F | F | T | T |
| F | T | T | F | T | F | T |
| F | T | F | F | T | T | T |
| F | F | T | F | T | F | T |
| F | F | F | F | F | T | T |

Related problems in "Discrete Mathematics"

We are given a recursive function defined by $a_n = 2a_{n-1}$ with $a_0 = 1$. We need to find the va...

Recursive SequencesSequences and Series
2025/6/7

The problem asks us to construct a truth table for the expression $ [(M \rightarrow J) \land (J \rig...

LogicTruth TablePropositional LogicTautology
2025/6/7

Given the statement "If $x^2 = 4$, then $x = 2$", we need to find the converse, inverse, and contrap...

LogicConditional StatementsConverseInverseContrapositiveTruth Values
2025/6/7

The problem asks to find the two's complement representation of the numbers 56 and -56 using 8 bits.

Computer ScienceNumber RepresentationBinary NumbersTwo's Complement
2025/6/7

The problem asks us to find the two's complement representation of the number 56 using 8 bits.

Number RepresentationBinary RepresentationTwo's ComplementComputer Arithmetic
2025/6/7

The problem asks to represent the numbers 26 and -34 in binary using 8 bits, where the most signific...

Binary RepresentationTwo's ComplementComputer ScienceBitwise Operations
2025/6/7

The problem asks to convert the given 2-byte binary number, $1000111001110011$, into its hexadecimal...

Binary NumbersHexadecimal ConversionNumber Systems
2025/6/7

The problem asks to find the number of functions from set A to set B, and from set B to set A, given...

Set TheoryFunctionsCardinalityCounting
2025/6/7

We are given two sets $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4, 5\}$. We need to determine: i) The...

Set TheoryFunctionsCardinality
2025/6/7

The problem describes a survey of car enthusiasts. We are given the number of people who drove cars ...

Set TheoryInclusion-Exclusion PrincipleVenn Diagrams
2025/6/7