Given three vectors $\vec{a} = 6\hat{i} + 3\hat{j} - 9\hat{k}$, $\vec{b} = 12\hat{i} - 8\hat{j} - 4\hat{k}$, and $\vec{c} = 4\hat{i} - 2\hat{j} + 3\hat{k}$, we need to find: I. The angle between $\vec{a}$ and $\vec{b}$. II. The scalar triple product $\vec{a} \cdot (\vec{b} \times \vec{c})$. III. The vector triple product $\vec{c} \times (\vec{a} \times \vec{b})$.

GeometryVectorsDot ProductCross ProductScalar Triple ProductVector Triple Product3D Geometry
2025/6/15

1. Problem Description

Given three vectors a=6i^+3j^9k^\vec{a} = 6\hat{i} + 3\hat{j} - 9\hat{k}, b=12i^8j^4k^\vec{b} = 12\hat{i} - 8\hat{j} - 4\hat{k}, and c=4i^2j^+3k^\vec{c} = 4\hat{i} - 2\hat{j} + 3\hat{k}, we need to find:
I. The angle between a\vec{a} and b\vec{b}.
II. The scalar triple product a(b×c)\vec{a} \cdot (\vec{b} \times \vec{c}).
III. The vector triple product c×(a×b)\vec{c} \times (\vec{a} \times \vec{b}).

2. Solution Steps

I. Angle between a\vec{a} and b\vec{b}:
The dot product of two vectors is given by:
ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta}
where θ\theta is the angle between the two vectors. Therefore,
cosθ=abab\cos{\theta} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}
ab=(6)(12)+(3)(8)+(9)(4)=7224+36=84\vec{a} \cdot \vec{b} = (6)(12) + (3)(-8) + (-9)(-4) = 72 - 24 + 36 = 84
a=62+32+(9)2=36+9+81=126=314|\vec{a}| = \sqrt{6^2 + 3^2 + (-9)^2} = \sqrt{36 + 9 + 81} = \sqrt{126} = 3\sqrt{14}
b=122+(8)2+(4)2=144+64+16=224=414|\vec{b}| = \sqrt{12^2 + (-8)^2 + (-4)^2} = \sqrt{144 + 64 + 16} = \sqrt{224} = 4\sqrt{14}
cosθ=84(314)(414)=841214=84168=12\cos{\theta} = \frac{84}{(3\sqrt{14})(4\sqrt{14})} = \frac{84}{12 \cdot 14} = \frac{84}{168} = \frac{1}{2}
θ=arccos12=π3\theta = \arccos{\frac{1}{2}} = \frac{\pi}{3} radians or 6060^{\circ}
II. Evaluate a(b×c)\vec{a} \cdot (\vec{b} \times \vec{c}):
The scalar triple product can be calculated as the determinant of a matrix formed by the components of the three vectors:
a(b×c)=axayazbxbybzcxcycz=6391284423\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} 6 & 3 & -9 \\ 12 & -8 & -4 \\ 4 & -2 & 3 \end{vmatrix}
Expanding the determinant:
=6((8)(3)(4)(2))3((12)(3)(4)(4))+(9)((12)(2)(8)(4))= 6((-8)(3) - (-4)(-2)) - 3((12)(3) - (-4)(4)) + (-9)((12)(-2) - (-8)(4))
=6(248)3(36+16)9(24+32)= 6(-24 - 8) - 3(36 + 16) - 9(-24 + 32)
=6(32)3(52)9(8)= 6(-32) - 3(52) - 9(8)
=19215672= -192 - 156 - 72
=420= -420
III. Evaluate c×(a×b)\vec{c} \times (\vec{a} \times \vec{b}):
First, we calculate a×b\vec{a} \times \vec{b}:
a×b=i^j^k^6391284=i^((3)(4)(9)(8))j^((6)(4)(9)(12))+k^((6)(8)(3)(12))\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 3 & -9 \\ 12 & -8 & -4 \end{vmatrix} = \hat{i}((3)(-4) - (-9)(-8)) - \hat{j}((6)(-4) - (-9)(12)) + \hat{k}((6)(-8) - (3)(12))
=i^(1272)j^(24+108)+k^(4836)= \hat{i}(-12 - 72) - \hat{j}(-24 + 108) + \hat{k}(-48 - 36)
=84i^84j^84k^= -84\hat{i} - 84\hat{j} - 84\hat{k}
Now, we calculate c×(a×b)\vec{c} \times (\vec{a} \times \vec{b}):
c×(a×b)=i^j^k^423848484=i^((2)(84)(3)(84))j^((4)(84)(3)(84))+k^((4)(84)(2)(84))\vec{c} \times (\vec{a} \times \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & 3 \\ -84 & -84 & -84 \end{vmatrix} = \hat{i}((-2)(-84) - (3)(-84)) - \hat{j}((4)(-84) - (3)(-84)) + \hat{k}((4)(-84) - (-2)(-84))
=i^(168+252)j^(336+252)+k^(336168)= \hat{i}(168 + 252) - \hat{j}(-336 + 252) + \hat{k}(-336 - 168)
=420i^+84j^504k^= 420\hat{i} + 84\hat{j} - 504\hat{k}

3. Final Answer

I. The angle between a\vec{a} and b\vec{b} is π3\frac{\pi}{3} radians or 6060^{\circ}.
II. a(b×c)=420\vec{a} \cdot (\vec{b} \times \vec{c}) = -420
III. c×(a×b)=420i^+84j^504k^\vec{c} \times (\vec{a} \times \vec{b}) = 420\hat{i} + 84\hat{j} - 504\hat{k}

Related problems in "Geometry"

The problem asks to put the steps for constructing a right-angled triangle with a base of 10 cm and ...

Triangle ConstructionRight-Angled TriangleGeometric Construction
2025/6/16

The problem is to arrange the steps to construct a right-angled triangle with a base of 10 cm and a ...

Geometric ConstructionRight TriangleCompass and Straightedge
2025/6/16

The problem asks to arrange the steps for constructing triangle $XYZ$ given that $XY = 10$ cm, $XZ =...

Triangle ConstructionEuclidean GeometryGeometric Construction
2025/6/16

The problem asks to prove the Angle Sum Theorem for a triangle, which states that the sum of the int...

Angle Sum TheoremTrianglesGeometric ProofParallel LinesAlternate Interior Angles
2025/6/15

We are given a triangle $ABC$ with an angle $A = 55^\circ$. We are also given that $DE$ is parallel ...

TrianglesParallel LinesAnglesGeometric Proof
2025/6/15

The problem describes a geometric construction. It asks us to: i. Construct triangle ABC with $AB = ...

Geometric ConstructionTrianglesTrapeziumsCirclesArea CalculationAnglesParallel LinesPerpendicular Bisector
2025/6/15

The problem asks to perform a series of geometric constructions and calculations based on the given ...

Geometric ConstructionTrianglesTrapeziumsCirclesAnglesArea CalculationLaw of Cosines
2025/6/15

Given that vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ are coplanar, we need to show that the determ...

VectorsDeterminantsLinear AlgebraCoplanar VectorsDot Product
2025/6/15

We need to show that the four points $A = -6i + 3j + 2k$, $B = 3i - 2j + 4k$, $C = 5i + 7j + 3k$, an...

Vectors3D GeometryCoplanar PointsScalar Triple ProductDeterminants
2025/6/15

We need to prove that the scalar triple product of the vectors $a+b$, $b+c$, and $c+a$ is equal to t...

Vector AlgebraScalar Triple ProductVector Operations3D Geometry
2025/6/15