I. Angle between a ⃗ \vec{a} a and b ⃗ \vec{b} b : The dot product of two vectors is given by:
a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos θ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta} a ⋅ b = ∣ a ∣∣ b ∣ cos θ where θ \theta θ is the angle between the two vectors. Therefore, cos θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos{\theta} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} cos θ = ∣ a ∣∣ b ∣ a ⋅ b
a ⃗ ⋅ b ⃗ = ( 6 ) ( 12 ) + ( 3 ) ( − 8 ) + ( − 9 ) ( − 4 ) = 72 − 24 + 36 = 84 \vec{a} \cdot \vec{b} = (6)(12) + (3)(-8) + (-9)(-4) = 72 - 24 + 36 = 84 a ⋅ b = ( 6 ) ( 12 ) + ( 3 ) ( − 8 ) + ( − 9 ) ( − 4 ) = 72 − 24 + 36 = 84 ∣ a ⃗ ∣ = 6 2 + 3 2 + ( − 9 ) 2 = 36 + 9 + 81 = 126 = 3 14 |\vec{a}| = \sqrt{6^2 + 3^2 + (-9)^2} = \sqrt{36 + 9 + 81} = \sqrt{126} = 3\sqrt{14} ∣ a ∣ = 6 2 + 3 2 + ( − 9 ) 2 = 36 + 9 + 81 = 126 = 3 14 ∣ b ⃗ ∣ = 12 2 + ( − 8 ) 2 + ( − 4 ) 2 = 144 + 64 + 16 = 224 = 4 14 |\vec{b}| = \sqrt{12^2 + (-8)^2 + (-4)^2} = \sqrt{144 + 64 + 16} = \sqrt{224} = 4\sqrt{14} ∣ b ∣ = 1 2 2 + ( − 8 ) 2 + ( − 4 ) 2 = 144 + 64 + 16 = 224 = 4 14
cos θ = 84 ( 3 14 ) ( 4 14 ) = 84 12 ⋅ 14 = 84 168 = 1 2 \cos{\theta} = \frac{84}{(3\sqrt{14})(4\sqrt{14})} = \frac{84}{12 \cdot 14} = \frac{84}{168} = \frac{1}{2} cos θ = ( 3 14 ) ( 4 14 ) 84 = 12 ⋅ 14 84 = 168 84 = 2 1 θ = arccos 1 2 = π 3 \theta = \arccos{\frac{1}{2}} = \frac{\pi}{3} θ = arccos 2 1 = 3 π radians or 60 ∘ 60^{\circ} 6 0 ∘
II. Evaluate a ⃗ ⋅ ( b ⃗ × c ⃗ ) \vec{a} \cdot (\vec{b} \times \vec{c}) a ⋅ ( b × c ) : The scalar triple product can be calculated as the determinant of a matrix formed by the components of the three vectors:
a ⃗ ⋅ ( b ⃗ × c ⃗ ) = ∣ a x a y a z b x b y b z c x c y c z ∣ = ∣ 6 3 − 9 12 − 8 − 4 4 − 2 3 ∣ \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} 6 & 3 & -9 \\ 12 & -8 & -4 \\ 4 & -2 & 3 \end{vmatrix} a ⋅ ( b × c ) = a x b x c x a y b y c y a z b z c z = 6 12 4 3 − 8 − 2 − 9 − 4 3
Expanding the determinant:
= 6 ( ( − 8 ) ( 3 ) − ( − 4 ) ( − 2 ) ) − 3 ( ( 12 ) ( 3 ) − ( − 4 ) ( 4 ) ) + ( − 9 ) ( ( 12 ) ( − 2 ) − ( − 8 ) ( 4 ) ) = 6((-8)(3) - (-4)(-2)) - 3((12)(3) - (-4)(4)) + (-9)((12)(-2) - (-8)(4)) = 6 (( − 8 ) ( 3 ) − ( − 4 ) ( − 2 )) − 3 (( 12 ) ( 3 ) − ( − 4 ) ( 4 )) + ( − 9 ) (( 12 ) ( − 2 ) − ( − 8 ) ( 4 )) = 6 ( − 24 − 8 ) − 3 ( 36 + 16 ) − 9 ( − 24 + 32 ) = 6(-24 - 8) - 3(36 + 16) - 9(-24 + 32) = 6 ( − 24 − 8 ) − 3 ( 36 + 16 ) − 9 ( − 24 + 32 ) = 6 ( − 32 ) − 3 ( 52 ) − 9 ( 8 ) = 6(-32) - 3(52) - 9(8) = 6 ( − 32 ) − 3 ( 52 ) − 9 ( 8 ) = − 192 − 156 − 72 = -192 - 156 - 72 = − 192 − 156 − 72
III. Evaluate c ⃗ × ( a ⃗ × b ⃗ ) \vec{c} \times (\vec{a} \times \vec{b}) c × ( a × b ) : First, we calculate a ⃗ × b ⃗ \vec{a} \times \vec{b} a × b : a ⃗ × b ⃗ = ∣ i ^ j ^ k ^ 6 3 − 9 12 − 8 − 4 ∣ = i ^ ( ( 3 ) ( − 4 ) − ( − 9 ) ( − 8 ) ) − j ^ ( ( 6 ) ( − 4 ) − ( − 9 ) ( 12 ) ) + k ^ ( ( 6 ) ( − 8 ) − ( 3 ) ( 12 ) ) \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 3 & -9 \\ 12 & -8 & -4 \end{vmatrix} = \hat{i}((3)(-4) - (-9)(-8)) - \hat{j}((6)(-4) - (-9)(12)) + \hat{k}((6)(-8) - (3)(12)) a × b = i ^ 6 12 j ^ 3 − 8 k ^ − 9 − 4 = i ^ (( 3 ) ( − 4 ) − ( − 9 ) ( − 8 )) − j ^ (( 6 ) ( − 4 ) − ( − 9 ) ( 12 )) + k ^ (( 6 ) ( − 8 ) − ( 3 ) ( 12 )) = i ^ ( − 12 − 72 ) − j ^ ( − 24 + 108 ) + k ^ ( − 48 − 36 ) = \hat{i}(-12 - 72) - \hat{j}(-24 + 108) + \hat{k}(-48 - 36) = i ^ ( − 12 − 72 ) − j ^ ( − 24 + 108 ) + k ^ ( − 48 − 36 ) = − 84 i ^ − 84 j ^ − 84 k ^ = -84\hat{i} - 84\hat{j} - 84\hat{k} = − 84 i ^ − 84 j ^ − 84 k ^
Now, we calculate c ⃗ × ( a ⃗ × b ⃗ ) \vec{c} \times (\vec{a} \times \vec{b}) c × ( a × b ) : c ⃗ × ( a ⃗ × b ⃗ ) = ∣ i ^ j ^ k ^ 4 − 2 3 − 84 − 84 − 84 ∣ = i ^ ( ( − 2 ) ( − 84 ) − ( 3 ) ( − 84 ) ) − j ^ ( ( 4 ) ( − 84 ) − ( 3 ) ( − 84 ) ) + k ^ ( ( 4 ) ( − 84 ) − ( − 2 ) ( − 84 ) ) \vec{c} \times (\vec{a} \times \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & 3 \\ -84 & -84 & -84 \end{vmatrix} = \hat{i}((-2)(-84) - (3)(-84)) - \hat{j}((4)(-84) - (3)(-84)) + \hat{k}((4)(-84) - (-2)(-84)) c × ( a × b ) = i ^ 4 − 84 j ^ − 2 − 84 k ^ 3 − 84 = i ^ (( − 2 ) ( − 84 ) − ( 3 ) ( − 84 )) − j ^ (( 4 ) ( − 84 ) − ( 3 ) ( − 84 )) + k ^ (( 4 ) ( − 84 ) − ( − 2 ) ( − 84 )) = i ^ ( 168 + 252 ) − j ^ ( − 336 + 252 ) + k ^ ( − 336 − 168 ) = \hat{i}(168 + 252) - \hat{j}(-336 + 252) + \hat{k}(-336 - 168) = i ^ ( 168 + 252 ) − j ^ ( − 336 + 252 ) + k ^ ( − 336 − 168 ) = 420 i ^ + 84 j ^ − 504 k ^ = 420\hat{i} + 84\hat{j} - 504\hat{k} = 420 i ^ + 84 j ^ − 504 k ^