Given that vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ are coplanar, we need to show that the determinant of the following matrix is equal to zero: $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} = 0$

GeometryVectorsDeterminantsLinear AlgebraCoplanar VectorsDot Product
2025/6/15

1. Problem Description

Given that vectors a\vec{a}, b\vec{b}, and c\vec{c} are coplanar, we need to show that the determinant of the following matrix is equal to zero:
abcaaabacbabbbc=0\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} = 0

2. Solution Steps

Since the vectors a\vec{a}, b\vec{b}, and c\vec{c} are coplanar, one of them can be written as a linear combination of the other two. Let's assume c=xa+yb\vec{c} = x\vec{a} + y\vec{b}, where xx and yy are scalars.
We can substitute this expression for c\vec{c} into the determinant:
abxa+ybaaaba(xa+yb)babbb(xa+yb)\begin{vmatrix} \vec{a} & \vec{b} & x\vec{a} + y\vec{b} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot (x\vec{a} + y\vec{b}) \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot (x\vec{a} + y\vec{b}) \end{vmatrix}
Using the properties of the dot product, we have:
a(xa+yb)=x(aa)+y(ab)\vec{a} \cdot (x\vec{a} + y\vec{b}) = x(\vec{a} \cdot \vec{a}) + y(\vec{a} \cdot \vec{b})
b(xa+yb)=x(ba)+y(bb)\vec{b} \cdot (x\vec{a} + y\vec{b}) = x(\vec{b} \cdot \vec{a}) + y(\vec{b} \cdot \vec{b})
Substitute these back into the determinant:
abxa+ybaaabx(aa)+y(ab)babbx(ba)+y(bb)\begin{vmatrix} \vec{a} & \vec{b} & x\vec{a} + y\vec{b} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & x(\vec{a} \cdot \vec{a}) + y(\vec{a} \cdot \vec{b}) \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & x(\vec{b} \cdot \vec{a}) + y(\vec{b} \cdot \vec{b}) \end{vmatrix}
Now, we can split the third column into two columns using the property of determinants:
abxaaaabx(aa)babbx(ba)+abybaaaby(ab)babby(bb)\begin{vmatrix} \vec{a} & \vec{b} & x\vec{a} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & x(\vec{a} \cdot \vec{a}) \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & x(\vec{b} \cdot \vec{a}) \end{vmatrix} + \begin{vmatrix} \vec{a} & \vec{b} & y\vec{b} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & y(\vec{a} \cdot \vec{b}) \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & y(\vec{b} \cdot \vec{b}) \end{vmatrix}
We can factor out the scalars xx and yy from the third columns:
xabaaaabaababbba+yabbaaababbabbbbx\begin{vmatrix} \vec{a} & \vec{b} & \vec{a} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{a} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{a} \end{vmatrix} + y\begin{vmatrix} \vec{a} & \vec{b} & \vec{b} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}
Since the determinant of a matrix with two identical columns is zero, both determinants are zero.
x(0)+y(0)=0x(0) + y(0) = 0

3. Final Answer

The determinant is equal to zero.

Related problems in "Geometry"

Given three vectors $\vec{a} = 6\hat{i} + 3\hat{j} - 9\hat{k}$, $\vec{b} = 12\hat{i} - 8\hat{j} - 4\...

VectorsDot ProductCross ProductScalar Triple ProductVector Triple Product3D Geometry
2025/6/15

The problem asks to prove the Angle Sum Theorem for a triangle, which states that the sum of the int...

Angle Sum TheoremTrianglesGeometric ProofParallel LinesAlternate Interior Angles
2025/6/15

We are given a triangle $ABC$ with an angle $A = 55^\circ$. We are also given that $DE$ is parallel ...

TrianglesParallel LinesAnglesGeometric Proof
2025/6/15

The problem describes a geometric construction. It asks us to: i. Construct triangle ABC with $AB = ...

Geometric ConstructionTrianglesTrapeziumsCirclesArea CalculationAnglesParallel LinesPerpendicular Bisector
2025/6/15

The problem asks to perform a series of geometric constructions and calculations based on the given ...

Geometric ConstructionTrianglesTrapeziumsCirclesAnglesArea CalculationLaw of Cosines
2025/6/15

We need to show that the four points $A = -6i + 3j + 2k$, $B = 3i - 2j + 4k$, $C = 5i + 7j + 3k$, an...

Vectors3D GeometryCoplanar PointsScalar Triple ProductDeterminants
2025/6/15

We need to prove that the scalar triple product of the vectors $a+b$, $b+c$, and $c+a$ is equal to t...

Vector AlgebraScalar Triple ProductVector Operations3D Geometry
2025/6/15

The problem asks us to find the volume of a tetrahedron with vertices $A(2, -1, -3)$, $B(4, 1, 3)$, ...

3D GeometryVolumeTetrahedronVectorsScalar Triple ProductCross Product
2025/6/15

The problem asks to find the equation of the line $AB$ given points $A(-1, 3, 2)$ and $B(2, 1, -2)$....

3D GeometryLines in 3DParametric EquationsIntersection of Lines and Planes
2025/6/15

The problem asks to find the volume of water in a rectangular parallelepiped, given its dimensions: ...

VolumeRectangular ParallelepipedUnits ConversionFractions
2025/6/15