Given that $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, and also given that $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$, show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$.

GeometryVector AlgebraCross ProductVector EquationsParallel Vectors
2025/3/29

1. Problem Description

Given that a×b=c×d\vec{a} \times \vec{b} = \vec{c} \times \vec{d} and a×c=b×d\vec{a} \times \vec{c} = \vec{b} \times \vec{d}, and also given that ad\vec{a} \neq \vec{d} and bc\vec{b} \neq \vec{c}, show that ad\vec{a} - \vec{d} is parallel to bc\vec{b} - \vec{c}.

2. Solution Steps

We are given two equations:
a×b=c×d(1)\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \hspace{1cm} (1)
a×c=b×d(2)\vec{a} \times \vec{c} = \vec{b} \times \vec{d} \hspace{1cm} (2)
Rearranging equation (1), we get:
a×bc×d=0\vec{a} \times \vec{b} - \vec{c} \times \vec{d} = \vec{0}
a×b+d×c=0(3)\vec{a} \times \vec{b} + \vec{d} \times \vec{c} = \vec{0} \hspace{1cm} (3)
Rearranging equation (2), we get:
a×cb×d=0\vec{a} \times \vec{c} - \vec{b} \times \vec{d} = \vec{0}
a×c+d×b=0(4)\vec{a} \times \vec{c} + \vec{d} \times \vec{b} = \vec{0} \hspace{1cm} (4)
Subtracting equation (4) from equation (3), we have:
(a×b+d×c)(a×c+d×b)=00(\vec{a} \times \vec{b} + \vec{d} \times \vec{c}) - (\vec{a} \times \vec{c} + \vec{d} \times \vec{b}) = \vec{0} - \vec{0}
a×b+d×ca×cd×b=0\vec{a} \times \vec{b} + \vec{d} \times \vec{c} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} = \vec{0}
a×ba×c+d×cd×b=0\vec{a} \times \vec{b} - \vec{a} \times \vec{c} + \vec{d} \times \vec{c} - \vec{d} \times \vec{b} = \vec{0}
a×(bc)+d×(cb)=0\vec{a} \times (\vec{b} - \vec{c}) + \vec{d} \times (\vec{c} - \vec{b}) = \vec{0}
a×(bc)d×(bc)=0\vec{a} \times (\vec{b} - \vec{c}) - \vec{d} \times (\vec{b} - \vec{c}) = \vec{0}
(ad)×(bc)=0(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}
If the cross product of two vectors is the zero vector, then the vectors are parallel.
Since (ad)×(bc)=0(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}, then ad\vec{a} - \vec{d} is parallel to bc\vec{b} - \vec{c}. Also, since ad\vec{a} \neq \vec{d} and bc\vec{b} \neq \vec{c}, ad0\vec{a} - \vec{d} \neq \vec{0} and bc0\vec{b} - \vec{c} \neq \vec{0}.

3. Final Answer

ad\vec{a} - \vec{d} is parallel to bc\vec{b} - \vec{c}.

Related problems in "Geometry"

The problem asks to find the total area of a composite figure made up of two rectangles and a right ...

AreaComposite FiguresRectanglesTriangles
2025/4/23

The problem states that a triangle has angle measures of $(x+3)^\circ$, $(5x-8)^\circ$, and $(2x+1)^...

TriangleAngle Sum PropertyAlgebra
2025/4/23

We are given a diagram with a straight line and two lines intersecting it, forming angles. We are gi...

AnglesStraight LinesAngle Calculation
2025/4/22

The problem asks to find the size of angle $x$ in the given diagram. The angles $30^{\circ}$, $x$, a...

AnglesStraight LineAngle Calculation
2025/4/22

The problem asks to find the size of angle $x$ given a straight line with angles $20^{\circ}$, $x$, ...

AnglesStraight LineAngle Calculation
2025/4/22

The problem states that a line $l$ has a slope $m = -\frac{2}{3}$. We are asked to find the slope of...

LinesSlopePerpendicular Lines
2025/4/22

The problem asks for the size of angle $x$ given that the angles $30^\circ$, $x$, and $55^\circ$ for...

AnglesStraight LineAngle Sum
2025/4/22

We are asked to find the size of angle $x$ in the given diagram. We are given that the angles $30^{\...

AnglesStraight LinesAngle Calculation
2025/4/22

The problem asks us to find the size of angle $x$ in the given diagram. We are given that the angles...

AnglesStraight LineAngle SumGeometry
2025/4/22

We are given a pentagon ABCDE. We need to answer the following questions: a) Which two line segments...

PentagonParallel LinesLine SegmentsPerpendicular LinesGeometric Shapes
2025/4/22