Given that $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, and also given that $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$, show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$.

GeometryVector AlgebraCross ProductVector EquationsParallel Vectors
2025/3/29

1. Problem Description

Given that a×b=c×d\vec{a} \times \vec{b} = \vec{c} \times \vec{d} and a×c=b×d\vec{a} \times \vec{c} = \vec{b} \times \vec{d}, and also given that ad\vec{a} \neq \vec{d} and bc\vec{b} \neq \vec{c}, show that ad\vec{a} - \vec{d} is parallel to bc\vec{b} - \vec{c}.

2. Solution Steps

We are given two equations:
a×b=c×d(1)\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \hspace{1cm} (1)
a×c=b×d(2)\vec{a} \times \vec{c} = \vec{b} \times \vec{d} \hspace{1cm} (2)
Rearranging equation (1), we get:
a×bc×d=0\vec{a} \times \vec{b} - \vec{c} \times \vec{d} = \vec{0}
a×b+d×c=0(3)\vec{a} \times \vec{b} + \vec{d} \times \vec{c} = \vec{0} \hspace{1cm} (3)
Rearranging equation (2), we get:
a×cb×d=0\vec{a} \times \vec{c} - \vec{b} \times \vec{d} = \vec{0}
a×c+d×b=0(4)\vec{a} \times \vec{c} + \vec{d} \times \vec{b} = \vec{0} \hspace{1cm} (4)
Subtracting equation (4) from equation (3), we have:
(a×b+d×c)(a×c+d×b)=00(\vec{a} \times \vec{b} + \vec{d} \times \vec{c}) - (\vec{a} \times \vec{c} + \vec{d} \times \vec{b}) = \vec{0} - \vec{0}
a×b+d×ca×cd×b=0\vec{a} \times \vec{b} + \vec{d} \times \vec{c} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} = \vec{0}
a×ba×c+d×cd×b=0\vec{a} \times \vec{b} - \vec{a} \times \vec{c} + \vec{d} \times \vec{c} - \vec{d} \times \vec{b} = \vec{0}
a×(bc)+d×(cb)=0\vec{a} \times (\vec{b} - \vec{c}) + \vec{d} \times (\vec{c} - \vec{b}) = \vec{0}
a×(bc)d×(bc)=0\vec{a} \times (\vec{b} - \vec{c}) - \vec{d} \times (\vec{b} - \vec{c}) = \vec{0}
(ad)×(bc)=0(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}
If the cross product of two vectors is the zero vector, then the vectors are parallel.
Since (ad)×(bc)=0(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}, then ad\vec{a} - \vec{d} is parallel to bc\vec{b} - \vec{c}. Also, since ad\vec{a} \neq \vec{d} and bc\vec{b} \neq \vec{c}, ad0\vec{a} - \vec{d} \neq \vec{0} and bc0\vec{b} - \vec{c} \neq \vec{0}.

3. Final Answer

ad\vec{a} - \vec{d} is parallel to bc\vec{b} - \vec{c}.

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8