We are given two equations:
a ⃗ × b ⃗ = c ⃗ × d ⃗ ( 1 ) \vec{a} \times \vec{b} = \vec{c} \times \vec{d} \hspace{1cm} (1) a × b = c × d ( 1 ) a ⃗ × c ⃗ = b ⃗ × d ⃗ ( 2 ) \vec{a} \times \vec{c} = \vec{b} \times \vec{d} \hspace{1cm} (2) a × c = b × d ( 2 )
Rearranging equation (1), we get:
a ⃗ × b ⃗ − c ⃗ × d ⃗ = 0 ⃗ \vec{a} \times \vec{b} - \vec{c} \times \vec{d} = \vec{0} a × b − c × d = 0 a ⃗ × b ⃗ + d ⃗ × c ⃗ = 0 ⃗ ( 3 ) \vec{a} \times \vec{b} + \vec{d} \times \vec{c} = \vec{0} \hspace{1cm} (3) a × b + d × c = 0 ( 3 )
Rearranging equation (2), we get:
a ⃗ × c ⃗ − b ⃗ × d ⃗ = 0 ⃗ \vec{a} \times \vec{c} - \vec{b} \times \vec{d} = \vec{0} a × c − b × d = 0 a ⃗ × c ⃗ + d ⃗ × b ⃗ = 0 ⃗ ( 4 ) \vec{a} \times \vec{c} + \vec{d} \times \vec{b} = \vec{0} \hspace{1cm} (4) a × c + d × b = 0 ( 4 )
Subtracting equation (4) from equation (3), we have:
( a ⃗ × b ⃗ + d ⃗ × c ⃗ ) − ( a ⃗ × c ⃗ + d ⃗ × b ⃗ ) = 0 ⃗ − 0 ⃗ (\vec{a} \times \vec{b} + \vec{d} \times \vec{c}) - (\vec{a} \times \vec{c} + \vec{d} \times \vec{b}) = \vec{0} - \vec{0} ( a × b + d × c ) − ( a × c + d × b ) = 0 − 0 a ⃗ × b ⃗ + d ⃗ × c ⃗ − a ⃗ × c ⃗ − d ⃗ × b ⃗ = 0 ⃗ \vec{a} \times \vec{b} + \vec{d} \times \vec{c} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} = \vec{0} a × b + d × c − a × c − d × b = 0 a ⃗ × b ⃗ − a ⃗ × c ⃗ + d ⃗ × c ⃗ − d ⃗ × b ⃗ = 0 ⃗ \vec{a} \times \vec{b} - \vec{a} \times \vec{c} + \vec{d} \times \vec{c} - \vec{d} \times \vec{b} = \vec{0} a × b − a × c + d × c − d × b = 0 a ⃗ × ( b ⃗ − c ⃗ ) + d ⃗ × ( c ⃗ − b ⃗ ) = 0 ⃗ \vec{a} \times (\vec{b} - \vec{c}) + \vec{d} \times (\vec{c} - \vec{b}) = \vec{0} a × ( b − c ) + d × ( c − b ) = 0 a ⃗ × ( b ⃗ − c ⃗ ) − d ⃗ × ( b ⃗ − c ⃗ ) = 0 ⃗ \vec{a} \times (\vec{b} - \vec{c}) - \vec{d} \times (\vec{b} - \vec{c}) = \vec{0} a × ( b − c ) − d × ( b − c ) = 0 ( a ⃗ − d ⃗ ) × ( b ⃗ − c ⃗ ) = 0 ⃗ (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0} ( a − d ) × ( b − c ) = 0
If the cross product of two vectors is the zero vector, then the vectors are parallel.
Since ( a ⃗ − d ⃗ ) × ( b ⃗ − c ⃗ ) = 0 ⃗ (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0} ( a − d ) × ( b − c ) = 0 , then a ⃗ − d ⃗ \vec{a} - \vec{d} a − d is parallel to b ⃗ − c ⃗ \vec{b} - \vec{c} b − c . Also, since a ⃗ ≠ d ⃗ \vec{a} \neq \vec{d} a = d and b ⃗ ≠ c ⃗ \vec{b} \neq \vec{c} b = c , a ⃗ − d ⃗ ≠ 0 ⃗ \vec{a} - \vec{d} \neq \vec{0} a − d = 0 and b ⃗ − c ⃗ ≠ 0 ⃗ \vec{b} - \vec{c} \neq \vec{0} b − c = 0 .