Given a parallelogram constructed on vectors $\vec{AB}$ and $\vec{AD}$, express the vectors $\vec{OA}$, $\vec{OB}$, $\vec{OC}$, and $\vec{OD}$ in terms of $\vec{AB}$ and $\vec{AD}$, where $O$ is the intersection point of the diagonals $AC$ and $BD$.

GeometryVectorsParallelogramVector AdditionMidpoint
2025/3/29

1. Problem Description

Given a parallelogram constructed on vectors AB\vec{AB} and AD\vec{AD}, express the vectors OA\vec{OA}, OB\vec{OB}, OC\vec{OC}, and OD\vec{OD} in terms of AB\vec{AB} and AD\vec{AD}, where OO is the intersection point of the diagonals ACAC and BDBD.

2. Solution Steps

Let the parallelogram be ABCDABCD.
Since OO is the intersection of diagonals of a parallelogram, it is the midpoint of both diagonals.
OA=OA\vec{OA} = \vec{OA} (Trivial)
OB=OA+AB\vec{OB} = \vec{OA} + \vec{AB}
OC=OA+AC\vec{OC} = \vec{OA} + \vec{AC}
OD=OA+AD\vec{OD} = \vec{OA} + \vec{AD}
Since OO is the midpoint of ACAC, we have AO=12AC\vec{AO} = \frac{1}{2} \vec{AC}, so OA=12AC\vec{OA} = -\frac{1}{2} \vec{AC}.
Also, AC=AB+BC=AB+AD\vec{AC} = \vec{AB} + \vec{BC} = \vec{AB} + \vec{AD}.
So, OA=12(AB+AD)\vec{OA} = -\frac{1}{2} (\vec{AB} + \vec{AD})
Since OO is the midpoint of BDBD, we have BO=12BD\vec{BO} = \frac{1}{2} \vec{BD}, so OB=OD+DB=ODBD\vec{OB} = \vec{OD} + \vec{DB} = \vec{OD} - \vec{BD}.
Also, BD=ADAB\vec{BD} = \vec{AD} - \vec{AB}.
OB=OA+AB=12(AB+AD)+AB=12AB12AD\vec{OB} = \vec{OA} + \vec{AB} = -\frac{1}{2} (\vec{AB} + \vec{AD}) + \vec{AB} = \frac{1}{2} \vec{AB} - \frac{1}{2} \vec{AD}
OC=OB+BC=12AB12AD+AD=12AB+12AD\vec{OC} = \vec{OB} + \vec{BC} = \frac{1}{2} \vec{AB} - \frac{1}{2} \vec{AD} + \vec{AD} = \frac{1}{2} \vec{AB} + \frac{1}{2} \vec{AD}
Or, OC=OA=12(AB+AD)\vec{OC} = - \vec{OA} = \frac{1}{2} (\vec{AB} + \vec{AD}).
OD=OA+AD=12(AB+AD)+AD=12AB+12AD\vec{OD} = \vec{OA} + \vec{AD} = -\frac{1}{2} (\vec{AB} + \vec{AD}) + \vec{AD} = -\frac{1}{2} \vec{AB} + \frac{1}{2} \vec{AD}

3. Final Answer

OA=12AB12AD\vec{OA} = -\frac{1}{2} \vec{AB} - \frac{1}{2} \vec{AD}
OB=12AB12AD\vec{OB} = \frac{1}{2} \vec{AB} - \frac{1}{2} \vec{AD}
OC=12AB+12AD\vec{OC} = \frac{1}{2} \vec{AB} + \frac{1}{2} \vec{AD}
OD=12AB+12AD\vec{OD} = -\frac{1}{2} \vec{AB} + \frac{1}{2} \vec{AD}

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9