Given a regular hexagon $ABCDEF$, let $A_1, B_1, C_1, D_1, E_1, F_1$ be the midpoints of the sides $AB, BC, CD, DE, EF, FA$ respectively. We need to prove that $\vec{AA_1} + \vec{BB_1} + \vec{CC_1} + \vec{DD_1} + \vec{EE_1} + \vec{FF_1} = \vec{0}$.

GeometryVectorsGeometryHexagonMidpointVector Addition
2025/3/29

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, let A1,B1,C1,D1,E1,F1A_1, B_1, C_1, D_1, E_1, F_1 be the midpoints of the sides AB,BC,CD,DE,EF,FAAB, BC, CD, DE, EF, FA respectively. We need to prove that AA1+BB1+CC1+DD1+EE1+FF1=0\vec{AA_1} + \vec{BB_1} + \vec{CC_1} + \vec{DD_1} + \vec{EE_1} + \vec{FF_1} = \vec{0}.

2. Solution Steps

Let OO be the center of the hexagon. We can express each vector as the difference of position vectors:
AA1=OA1OA\vec{AA_1} = \vec{OA_1} - \vec{OA}
BB1=OB1OB\vec{BB_1} = \vec{OB_1} - \vec{OB}
CC1=OC1OC\vec{CC_1} = \vec{OC_1} - \vec{OC}
DD1=OD1OD\vec{DD_1} = \vec{OD_1} - \vec{OD}
EE1=OE1OE\vec{EE_1} = \vec{OE_1} - \vec{OE}
FF1=OF1OF\vec{FF_1} = \vec{OF_1} - \vec{OF}
Therefore,
AA1+BB1+CC1+DD1+EE1+FF1=(OA1OA)+(OB1OB)+(OC1OC)+(OD1OD)+(OE1OE)+(OF1OF)\vec{AA_1} + \vec{BB_1} + \vec{CC_1} + \vec{DD_1} + \vec{EE_1} + \vec{FF_1} = (\vec{OA_1} - \vec{OA}) + (\vec{OB_1} - \vec{OB}) + (\vec{OC_1} - \vec{OC}) + (\vec{OD_1} - \vec{OD}) + (\vec{OE_1} - \vec{OE}) + (\vec{OF_1} - \vec{OF})
=(OA1+OB1+OC1+OD1+OE1+OF1)(OA+OB+OC+OD+OE+OF)= (\vec{OA_1} + \vec{OB_1} + \vec{OC_1} + \vec{OD_1} + \vec{OE_1} + \vec{OF_1}) - (\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} + \vec{OF})
Since A1A_1 is the midpoint of ABAB, we have OA1=OA+OB2\vec{OA_1} = \frac{\vec{OA} + \vec{OB}}{2}. Similarly,
OB1=OB+OC2\vec{OB_1} = \frac{\vec{OB} + \vec{OC}}{2}
OC1=OC+OD2\vec{OC_1} = \frac{\vec{OC} + \vec{OD}}{2}
OD1=OD+OE2\vec{OD_1} = \frac{\vec{OD} + \vec{OE}}{2}
OE1=OE+OF2\vec{OE_1} = \frac{\vec{OE} + \vec{OF}}{2}
OF1=OF+OA2\vec{OF_1} = \frac{\vec{OF} + \vec{OA}}{2}
Therefore,
OA1+OB1+OC1+OD1+OE1+OF1=OA+OB2+OB+OC2+OC+OD2+OD+OE2+OE+OF2+OF+OA2\vec{OA_1} + \vec{OB_1} + \vec{OC_1} + \vec{OD_1} + \vec{OE_1} + \vec{OF_1} = \frac{\vec{OA} + \vec{OB}}{2} + \frac{\vec{OB} + \vec{OC}}{2} + \frac{\vec{OC} + \vec{OD}}{2} + \frac{\vec{OD} + \vec{OE}}{2} + \frac{\vec{OE} + \vec{OF}}{2} + \frac{\vec{OF} + \vec{OA}}{2}
=2(OA+OB+OC+OD+OE+OF)2=OA+OB+OC+OD+OE+OF= \frac{2(\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} + \vec{OF})}{2} = \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} + \vec{OF}
Plugging this back into the original equation:
AA1+BB1+CC1+DD1+EE1+FF1=(OA+OB+OC+OD+OE+OF)(OA+OB+OC+OD+OE+OF)=0\vec{AA_1} + \vec{BB_1} + \vec{CC_1} + \vec{DD_1} + \vec{EE_1} + \vec{FF_1} = (\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} + \vec{OF}) - (\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} + \vec{OE} + \vec{OF}) = \vec{0}

3. Final Answer

AA1+BB1+CC1+DD1+EE1+FF1=0\vec{AA_1} + \vec{BB_1} + \vec{CC_1} + \vec{DD_1} + \vec{EE_1} + \vec{FF_1} = \vec{0}

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8