The problem statement is problem 15. Given a triangle ABC, locate points I, J, and K such that $\vec{BI} = \frac{3}{2} \vec{BC}$, $\vec{CJ} = \frac{1}{3} \vec{CA}$, and $\vec{AK} = \frac{2}{5} \vec{AB}$. We need to prove that the points I, J, and K are aligned (collinear).

GeometryVector GeometryCollinearityTriangle Geometry
2025/3/9

1. Problem Description

The problem statement is problem
1

5. Given a triangle ABC, locate points I, J, and K such that $\vec{BI} = \frac{3}{2} \vec{BC}$, $\vec{CJ} = \frac{1}{3} \vec{CA}$, and $\vec{AK} = \frac{2}{5} \vec{AB}$.

We need to prove that the points I, J, and K are aligned (collinear).

2. Solution Steps

To prove that the points I, J, and K are aligned, we need to show that the vectors IJ\vec{IJ} and IK\vec{IK} are collinear, which means that there exists a scalar tt such that IJ=tIK\vec{IJ} = t \vec{IK}.
First, express IJ\vec{IJ} and IK\vec{IK} in terms of AB\vec{AB} and AC\vec{AC}.
IJ=IB+BC+CJ=BI+BC+CJ=32BC+BC+13CA=12BC13AC\vec{IJ} = \vec{IB} + \vec{BC} + \vec{CJ} = -\vec{BI} + \vec{BC} + \vec{CJ} = -\frac{3}{2} \vec{BC} + \vec{BC} + \frac{1}{3} \vec{CA} = -\frac{1}{2} \vec{BC} - \frac{1}{3} \vec{AC}
Since BC=ACAB\vec{BC} = \vec{AC} - \vec{AB},
IJ=12(ACAB)13AC=12AB12AC13AC=12AB56AC\vec{IJ} = -\frac{1}{2} (\vec{AC} - \vec{AB}) - \frac{1}{3} \vec{AC} = \frac{1}{2} \vec{AB} - \frac{1}{2} \vec{AC} - \frac{1}{3} \vec{AC} = \frac{1}{2} \vec{AB} - \frac{5}{6} \vec{AC}
IK=IB+BA+AK=BIAB+AK=32BCAB+25AB=32(ACAB)35AB=32AC+32AB35AB=910AB32AC\vec{IK} = \vec{IB} + \vec{BA} + \vec{AK} = -\vec{BI} - \vec{AB} + \vec{AK} = -\frac{3}{2} \vec{BC} - \vec{AB} + \frac{2}{5} \vec{AB} = -\frac{3}{2} (\vec{AC} - \vec{AB}) - \frac{3}{5} \vec{AB} = -\frac{3}{2} \vec{AC} + \frac{3}{2} \vec{AB} - \frac{3}{5} \vec{AB} = \frac{9}{10} \vec{AB} - \frac{3}{2} \vec{AC}
Now we want to find a scalar tt such that IJ=tIK\vec{IJ} = t \vec{IK}:
12AB56AC=t(910AB32AC)\frac{1}{2} \vec{AB} - \frac{5}{6} \vec{AC} = t (\frac{9}{10} \vec{AB} - \frac{3}{2} \vec{AC})
12AB56AC=910tAB32tAC\frac{1}{2} \vec{AB} - \frac{5}{6} \vec{AC} = \frac{9}{10} t \vec{AB} - \frac{3}{2} t \vec{AC}
Equating the coefficients of AB\vec{AB} and AC\vec{AC}:
12=910t    t=12109=59\frac{1}{2} = \frac{9}{10} t \implies t = \frac{1}{2} \cdot \frac{10}{9} = \frac{5}{9}
56=32t    t=5623=59-\frac{5}{6} = -\frac{3}{2} t \implies t = \frac{5}{6} \cdot \frac{2}{3} = \frac{5}{9}
Since the same value of t=59t = \frac{5}{9} works for both equations, IJ=59IK\vec{IJ} = \frac{5}{9} \vec{IK}.

3. Final Answer

IJ=59IK\vec{IJ} = \frac{5}{9}\vec{IK}

Related problems in "Geometry"

The image shows a screenshot of a tablet displaying a math worksheet titled "7.4B Polygons on a Coor...

Coordinate GeometryAreaPolygons
2025/4/4

The problem defines a function $P$ that represents the perimeter of a square with side length $x$. T...

PerimeterSquaresFunctionsLinear FunctionsGraphing
2025/4/4

The problem states that an equilateral triangle has three sides of equal length. The function $P$ gi...

PerimeterEquilateral TriangleFunctionsAlgebra
2025/4/4

We are given a figure containing a triangle $BCD$ with $\angle B = 25^{\circ}$ and $\angle D = 90^{\...

TrigonometryTrianglesRight TrianglesTrigonometric RatiosSimilar TrianglesProportions
2025/4/3

The problem asks to find the total length of wallpaper needed to cover the inside surface of an arch...

PerimeterSemi-circleCircumferenceArea CalculationWord Problem
2025/4/3

The problem asks to find the total length of wallpaper needed to cover the inside surface of an arch...

PerimeterSemicircleArc LengthMeasurementApproximation
2025/4/3

The problem describes a flower bed consisting of a semicircle of radius 14m adjoining a rectangular ...

AreaPerimeterSemicircleRectangleGeometric Shapes
2025/4/3

The given figure consists of a semicircle and a rectangle. Given $GF = DC = 4$ cm and $AB = 22$ cm, ...

AreaPerimeterSemicircleRectangleArc LengthGeometric Shapes
2025/4/3

The problem describes a plot of land consisting of a trapezium ABCD and a semi-circle DCP. The trape...

PerimeterAreaTrapeziumSemi-circleArc LengthGeometric Shapes
2025/4/3

Quadrilateral JKLM is similar to quadrilateral NOPQ. We are asked to find the measure of side OP, gi...

Similar FiguresQuadrilateralsProportionsSide Lengths
2025/4/2