In rectangle $ABCD$, $AB = 2BC$. On side $AB$, point $P$ is given such that $\angle APD = \angle DPC$. Calculate the measure of this angle.

GeometryRectangleAnglesLaw of CosinesTrigonometry
2025/3/29

1. Problem Description

In rectangle ABCDABCD, AB=2BCAB = 2BC. On side ABAB, point PP is given such that APD=DPC\angle APD = \angle DPC. Calculate the measure of this angle.

2. Solution Steps

Let BC=aBC = a, then AB=2aAB = 2a. Let AP=xAP = x, then PB=2axPB = 2a - x. Since ABCDABCD is a rectangle, AD=BC=aAD = BC = a and CD=AB=2aCD = AB = 2a. Let APD=DPC=θ\angle APD = \angle DPC = \theta.
Also, let BPC=α\angle BPC = \alpha. Since the angles around point PP sum to 360360^\circ, we have APD+DPC+BPC+APB=360\angle APD + \angle DPC + \angle BPC + \angle APB = 360^\circ, which means θ+θ+α+α=360\theta + \theta + \alpha + \alpha = 360^\circ, or 2θ+2α=3602\theta + 2\alpha = 360^\circ. Thus, θ+α=180\theta + \alpha = 180^\circ. This implies BPC=α=180θ\angle BPC = \alpha = 180^\circ - \theta.
Now, consider the triangles APDAPD, DPCDPC, and BPCBPC.
In APD\triangle APD, we have AP=xAP = x, AD=aAD = a, and PD=AP2+AD2=x2+a2PD = \sqrt{AP^2 + AD^2} = \sqrt{x^2 + a^2}. Also, tan(ADP)=APAD=xa\tan(\angle ADP) = \frac{AP}{AD} = \frac{x}{a}.
In BPC\triangle BPC, we have PB=2axPB = 2a-x, BC=aBC = a, and PC=PB2+BC2=(2ax)2+a2PC = \sqrt{PB^2 + BC^2} = \sqrt{(2a-x)^2 + a^2}. Also, tan(BCP)=PBBC=2axa\tan(\angle BCP) = \frac{PB}{BC} = \frac{2a-x}{a}.
In DPC\triangle DPC, we have CD=2aCD = 2a, DP=x2+a2DP = \sqrt{x^2 + a^2}, PC=(2ax)2+a2PC = \sqrt{(2a-x)^2 + a^2}, and DPC=θ\angle DPC = \theta.
Using the Law of Cosines on DPC\triangle DPC, we have
CD2=DP2+PC22(DP)(PC)cos(θ)CD^2 = DP^2 + PC^2 - 2(DP)(PC)\cos(\theta)
(2a)2=(x2+a2)+((2ax)2+a2)2(x2+a2)((2ax)2+a2)cos(θ)(2a)^2 = (x^2 + a^2) + ((2a-x)^2 + a^2) - 2\sqrt{(x^2+a^2)((2a-x)^2+a^2)}\cos(\theta)
4a2=x2+a2+4a24ax+x2+a22(x2+a2)(4a24ax+x2+a2)cos(θ)4a^2 = x^2 + a^2 + 4a^2 - 4ax + x^2 + a^2 - 2\sqrt{(x^2+a^2)(4a^2-4ax+x^2+a^2)}\cos(\theta)
4a2=2x24ax+6a22(x2+a2)(x24ax+5a2)cos(θ)4a^2 = 2x^2 - 4ax + 6a^2 - 2\sqrt{(x^2+a^2)(x^2-4ax+5a^2)}\cos(\theta)
2(x2+a2)(x24ax+5a2)cos(θ)=2x24ax+2a22\sqrt{(x^2+a^2)(x^2-4ax+5a^2)}\cos(\theta) = 2x^2 - 4ax + 2a^2
(x2+a2)(x24ax+5a2)cos(θ)=x22ax+a2=(xa)2\sqrt{(x^2+a^2)(x^2-4ax+5a^2)}\cos(\theta) = x^2 - 2ax + a^2 = (x-a)^2
Now, APD=DPC\angle APD = \angle DPC implies that PDPD and PCPC are equally inclined to the line through PP perpendicular to ABAB. This implies PP is the midpoint of ABAB.
Let PP be the midpoint of ABAB, then AP=PB=aAP = PB = a.
DP=a2+a2=a2DP = \sqrt{a^2+a^2} = a\sqrt{2}.
PC=a2+a2=a2PC = \sqrt{a^2+a^2} = a\sqrt{2}.
Thus, DP=PC=a2DP = PC = a\sqrt{2}. This means DPC\triangle DPC is an isosceles triangle.
Also, CD=2aCD = 2a.
Using the Law of Cosines in DPC\triangle DPC, we have
(2a)2=(a2)2+(a2)22(a2)(a2)cos(θ)(2a)^2 = (a\sqrt{2})^2 + (a\sqrt{2})^2 - 2(a\sqrt{2})(a\sqrt{2})\cos(\theta)
4a2=2a2+2a24a2cos(θ)4a^2 = 2a^2 + 2a^2 - 4a^2\cos(\theta)
4a2=4a24a2cos(θ)4a^2 = 4a^2 - 4a^2\cos(\theta)
0=4a2cos(θ)0 = -4a^2\cos(\theta)
cos(θ)=0\cos(\theta) = 0
θ=90\theta = 90^\circ.

3. Final Answer

90 degrees

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8